キササゲ

Catalpa ovata G. Don.（ノウゼンカズラ科）

キササゲは中国原産の落葉高木で、わが国で各地で栽培されています。秋になると町の中でも細長い身をいっぱいつけたキササゲの大木をみかけることができます。葉は広心臓形で、長柄があり対生し、葉縁は浅く3裂しています。初夏6月頃に白い腎形花を咲きやす状につけ、その花の内側の奥には、黄色の地に紫かほる色の斑点があります。果実は30cmもある細長い果で、熟すと先端より2片に裂けて、多数の両端有毛の種子が出ます。

民間薬から転じた比較的新しい生薬で、果実は利尿薬として優れており、副作用もなく、味がやや収斂性ながら殆ど無味で飲みやすく、利用したい民間薬の一つです。

表紙絵は昭和58年度に定年退官された加藤鉄三名誉教授が描かれたものであり、上記の解説本文は加藤健子夫人が「宮城県薬用植物園の草花」に記されたものの一部です。
はじめに

人類の健康な長寿は私たちの永遠の課題です。古くから人類はものを食べたり、飲んだり、塗ったりすることに体が反応することを知っていて、物質と人種の関わり合いをもとに薬が発展してきました。現代ではより合理的に薬を見つけて使用する試みが行われています。薬学はこのための最先端学問であり、化学と生物学を基礎として学際的に融合的な研究教育を行うとともに、医療に参画する役割を担っています。生命現象の理解あるいは病気の成り立ちを解明し薬になりうる物質を創り出すとともに、薬を適正に使用するための研究教育です。

創薬学科の出身者は多くの場合に大学院でさらに学んで創薬科学の研究者・技術者になるための基礎を築きます。薬学科では、研究心あふれる高度薬剤師としての基盤形成を行います。国内外の製薬・化学・食品・材料関連企業、大学、病院、公的機関などにおいて、研究開発、教育、医療、行政などの広い分野で活躍するリーダーを輩出します。

薬学部教育ではカリキュラムに従った全学教育科目と専門教育科目を履修します。本シラバスには、このなかで専門教育科目（講義科目と実習・演習科目）の目的、概要、到達目標、および毎回の授業の内容などがまとめて記されています。自ら学ぶ姿勢をもちながら、学習目標・計画を立てて上に活用してください。

薬学部長 山口 雅彦
目次

◆はじめに
◆講義科目

1セメスター	薬学概論 1	1
	機能形態学 1	2
2セメスター	有機化学 1	4
	有機化学 2	6
	分析化学 1	8
	物理化学 1	10
	機能形態学 2	12
	生化学 1	14
3セメスター	薬学概論 2	16
	有機化学 3	17
	生薬学 1	19
	物理化学 2	21
	生化学 2	23
	生化学 3	25
	薬理学 1	27
	薬理学 2	29
	薬剤学 1	31
4セメスター	有機化学 4	33
	有機化学 5	35
	生薬学 2	37
	分析化学 2	39
	放射化学	41
	構造化学	43
	生化学 4	45
	分子生物学	47
	薬理学 3	49
	衛生化学 1	51
	薬剤学 2	53
5セメスター	医薬品化学 1	55
	有機反応化学	57
	分析化学 3	59
	物理化学 3	61
	薬理学 4	63
| 6セメスター | | | | |
|-------------|----------------|----------------|-----------------|
| 公衆衛生学 1 | 65 |
| 天然物化学 | 67 |
| 有機合成化学 | 69 |
| 医薬品化学 2 | 71 |
| 薬品構造解析学 | 73 |
| 臨床医学概論 | 76 |
| 病院薬学概論 1 | 79 |
| 新薬開発論 | 81 |
| 画像診断薬物学 | 82 |
| 医薬統計学 | 84 |
| 免疫学 | 86 |
| 公衆衛生学 2 | 88 |
| 感染症学 | 90 |
| 病理学 | 92 |
| 遺伝分子生物学 | 94 |
| 生体有機物質化学 | 96 |

| 7セメスター | | | | |
|-------------|----------------|----------------|-----------------|
| 衛生化学 2 | 96 |
| 病院薬学概論 2 | 98 |
| 薬物療法学 1 | 101 |
| 医療情報学 | 103 |
| 漢方治療学 | 105 |
| 臨床薬理学 | 107 |
| 臨床薬剤学 | 110 |
| 処方箋解析学 | 112 |

| 8セメスター | | | | |
|-------------|----------------|----------------|-----------------|
| 薬物療法学 2 | 114 |
| 薬物療法学 3 | 116 |
| 臨床検査学 | 118 |
| 薬事関係法规 | 120 |
| 薬学英語 | 121 |
実習

<table>
<thead>
<tr>
<th>セメスター</th>
<th>课程名称</th>
<th>页码</th>
</tr>
</thead>
<tbody>
<tr>
<td>4セメスター</td>
<td>分析化学実習</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>物理化学実習</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>創薬化学実習1</td>
<td>124</td>
</tr>
<tr>
<td>5セメスター</td>
<td>創薬化学実習2</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>生命薬学実習</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>医療薬学実習</td>
<td>130</td>
</tr>
<tr>
<td>6セメスター</td>
<td>専門薬科学実習</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>専門薬学実習1</td>
<td>132</td>
</tr>
<tr>
<td>7・8セメスター</td>
<td>専門薬学実習2</td>
<td>133</td>
</tr>
<tr>
<td>8セメスター</td>
<td>医療薬学基礎実習</td>
<td>134</td>
</tr>
<tr>
<td>9セメスター</td>
<td>医療薬学病院実習</td>
<td>137</td>
</tr>
<tr>
<td>9・10セメスター</td>
<td>医療薬学薬局実習</td>
<td>142</td>
</tr>
</tbody>
</table>

演習

<table>
<thead>
<tr>
<th>セメスター</th>
<th>课程名称</th>
<th>页码</th>
</tr>
</thead>
<tbody>
<tr>
<td>8セメスター</td>
<td>医療薬学演習1</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>医療薬学演習2</td>
<td>148</td>
</tr>
<tr>
<td>12セメスター</td>
<td>総合薬学演習</td>
<td>149</td>
</tr>
</tbody>
</table>

課題研究

<table>
<thead>
<tr>
<th>セメスター</th>
<th>课程名称</th>
<th>页码</th>
</tr>
</thead>
<tbody>
<tr>
<td>7・8セメスター</td>
<td>課題研究</td>
<td>151</td>
</tr>
<tr>
<td>10・11・12セメスター</td>
<td>課題研究</td>
<td>152</td>
</tr>
</tbody>
</table>
講義科目
授業科目名：薬学概論1
配当学年（セメスター）：1年（1）
単位数：2（必修）
担当教員：安斎 順一、岩渕 好治
山口 雅彦、土井 隆行
德山 英利、大島 吉輝
大江 知行、永沼 章
倉田 祥一朗、稲田 利文
青木 淳賢、福永 浩司
真野 成康、佐藤 博
平澤 典保、根東 義則

[目的と概要]
薬の科学が広い分野の研究によって成り立っていることを学ぶ。さらに、近い将来に自らが学ぶ薬学の研究分野を見通し、今後大学で学ぶ授業科目の学習の重要性を理解する。この授業は薬学導入教育の一環として学習するものである。

[学習の到達目標]
今後薬学部で学ぶ広い学問領域を見通し、広範な専門科目を学ぶ重要性を理解する。

[授業内容]

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>講義題目</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>根東</td>
<td>授業のガイダンスおよび薬とヘテロ元素</td>
</tr>
<tr>
<td>2</td>
<td>大島</td>
<td>天然資源と薬</td>
</tr>
<tr>
<td>3</td>
<td>岩渕</td>
<td>薬の発見と発明</td>
</tr>
<tr>
<td>4</td>
<td>土井</td>
<td>薬のデザイン</td>
</tr>
<tr>
<td>5</td>
<td>徳山</td>
<td>薬と分子構造</td>
</tr>
<tr>
<td>6</td>
<td>眞野</td>
<td>病院薬剤部におけるバイオメディカル分析科学</td>
</tr>
<tr>
<td>7</td>
<td>大江</td>
<td>薬をはかる</td>
</tr>
<tr>
<td>8</td>
<td>永沼</td>
<td>環境汚染物質と薬学</td>
</tr>
<tr>
<td>9</td>
<td>倉田</td>
<td>薬と生体機能</td>
</tr>
<tr>
<td>10</td>
<td>稲田</td>
<td>薬と遺伝子</td>
</tr>
<tr>
<td>11</td>
<td>青木</td>
<td>脂質生物学への招待</td>
</tr>
<tr>
<td>12</td>
<td>福永</td>
<td>薬はなぜ効くのか</td>
</tr>
<tr>
<td>13</td>
<td>安斎</td>
<td>バイオセンサー</td>
</tr>
<tr>
<td>14</td>
<td>佐藤</td>
<td>薬にまつわるよもやま話</td>
</tr>
<tr>
<td>15</td>
<td>平澤</td>
<td>薬と病気</td>
</tr>
</tbody>
</table>

[成績評価方法] 出席状況とレポート
[教科書及び参考書] 指定しない。
授業科目名 : 機能形態学Ⅰ
配当学年（セメスター）：1年（1）
単位数：2
担当教員：平澤 典保、守屋 孝洋
鈴木 登紀子

【目的と概要】
機能形態学では、生体を構成する細胞・組織・臓器の機能に関して、それらの形態とのかかわりについて学ぶ。関連する組織学や生理学的内容を含まずに、生体が恒常性を維持するために、それぞれの組織、臓器の果たしている役割について理解する。機能形態学Ⅰでは、生命機能を支える細胞、造血組織、上皮・結合組織の微細な構造と機能について学び、さらに人体の内部の構造と呼吸器系、消化器系の構造と機能について学ぶ。

【学習の到達目標】
各細胞・組織・臓器の形態及び構造上の特徴とそれぞれの機能について説明できるようになる。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>守屋</td>
<td>細胞の構造と機能（Ⅰ）</td>
<td>人体を構成する細胞の概要について学ぶ。また、細胞を外界と隔てている細胞膜の構造と働きについて理解する。</td>
</tr>
<tr>
<td>2</td>
<td>守屋</td>
<td>細胞の構造と機能（Ⅱ）</td>
<td>ミトコンドリア、核、小胞体、ゴルジ体、リソソーム、ペルオキシソーム、リポソーム、細胞内顆粒など細胞内小器官の構造と働きについて理解する。</td>
</tr>
<tr>
<td>3</td>
<td>鈴木</td>
<td>細胞の構造と機能（Ⅲ）</td>
<td>細胞増殖および細胞生物の形成と情報伝達の概略について学ぶ。</td>
</tr>
<tr>
<td>4</td>
<td>鈴木</td>
<td>血液・造血・リンバ系（Ⅰ）</td>
<td>生体防御・恒常性維持の観点から、血球の種類と役割について学ぶ。また、造血組織・血球の分化について理解する。</td>
</tr>
<tr>
<td>5</td>
<td>鈴木</td>
<td>血液・造血・リンバ系（Ⅱ）</td>
<td>血管系とリンバ管系及び血管の構造、微小循環、胸腺、リンパ節、消化管リンパ組織、脾臓の役割について理解する。</td>
</tr>
<tr>
<td>6</td>
<td>鈴木</td>
<td>上皮組織</td>
<td>上皮の分類とそれぞれの組織・臓器における役割について理解する。</td>
</tr>
<tr>
<td>7</td>
<td>鈴木</td>
<td>結合組織</td>
<td>結合組織の構成成分や細胞外マトリックス、細胞接着について学ぶ。</td>
</tr>
<tr>
<td>8</td>
<td>平澤</td>
<td>人体の構造</td>
<td>人体を構成する臓器の外観、位置について学ぶ。</td>
</tr>
<tr>
<td>9</td>
<td>平澤</td>
<td>呼吸器系</td>
<td>呼吸器系の構造と機能について理解する。</td>
</tr>
<tr>
<td>10</td>
<td>平澤</td>
<td>消化器系（Ⅰ）</td>
<td>消化管の基本構造を理解し、最終的な消化にいたるまでのが消化管の構造と役割について学ぶ。食道の機能、胃の構造と胃酸分泌、自己消化からの防御機構について理解する。</td>
</tr>
</tbody>
</table>
11 平澤 消化器系（Ⅱ） 十二指腸、小腸、大腸の構造と機能について学ぶ。消化管の縦毛構造と消化吸収について理解する。

12 平澤 肝臓（Ⅰ） 消化器系と肝臓の関連性と肝臓の機能について学ぶ。

13 平澤 肝臓（Ⅱ） 肝小葉構造、血液供給、胆汁分泌など、肝の細胞構造と肝細胞構造について学ぶ。

14 平澤 腎臓 腎臓の構造、消化器系・肝臓との関連、内分泌腺としての腎臓について理解する。

15 平澤、守屋 総括 組織の構造と機能の関連性について総括する。

【成績評価方法】
筆記試験（中間試験および定期試験）と出席状況をもとに評価する。

【教科書】 「INTEGRATED ESSENTIALS 機能形態学 改訂第3版」重信弘毅 編、南江堂 (2003)
【参考書】 「機能形態学 改訂第3版」桜田忍/桜田司 編、南江堂 (2013)
授業科目名：有機化学１
配当学年（セメスター）：1年（2）
単位数：2
担当教員：岩沼 好治、矢 直樹

[目的と概要]
本授業では全学教育科目の化学 C で修得する原子軌道、分子軌道、化学結合論に引き続き、有機化学の基礎を理解する。有機化学 1 では、原子の空間配置を理解するための立体化学を学習する。また化学反応の基本理論をもとにハロゲン化アルキルの置換反応（S_n1 および S_n2 反応）と脱離反応（E1 および E2 反応）を学習する。

[学習の到達目標]
・立体化学の基本的な用語の意味を具体例とともに説明できるようになる。
・有機反応を熱力学および速度論の観点で説明できるようになる。
・ハロゲン化アルキルの置換反応（S_n1 および S_n2 反応）の特徴、反応機構、立体化学、および反応に影響を与える要因に関して説明できるようになる。
・ハロゲン化アルキルの脱離反応（E1 および E2 反応）の特徴、反応機構、位置選択性、立体化学、置換反応との競合、および反応に影響を与える要因に関して説明できるようになる。

[授業内容]

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>岩沼</td>
<td>立体化学（1）</td>
<td>異性体の分類と立体中心の概念について理解する。</td>
</tr>
<tr>
<td>2</td>
<td>岩沼</td>
<td>立体化学（2）</td>
<td>環状化合物の立体中心、エナンチオマーの R、S 表記について理解する。</td>
</tr>
<tr>
<td>3</td>
<td>岩沼</td>
<td>立体化学（3）</td>
<td>ジアステレオマー、メソ化合物について理解する。</td>
</tr>
<tr>
<td>4</td>
<td>岩沼</td>
<td>立体化学（4）</td>
<td>光学活性、光学純度、エナンチオマー過剰率について理解する。</td>
</tr>
<tr>
<td>5</td>
<td>岩沼</td>
<td>有機反応の理解（1）</td>
<td>有機反応の種類、反応式の書き方、結合解離エネルギーについて理解する。</td>
</tr>
<tr>
<td>6</td>
<td>岩沼</td>
<td>有機反応の理解（2）</td>
<td>有機反応を熱力学の観点から理解する。</td>
</tr>
<tr>
<td>7</td>
<td>岩沼</td>
<td>有機反応の理解（3）</td>
<td>有機反応を速度論の観点から理解し、触媒および薬素について理解する。</td>
</tr>
<tr>
<td>8</td>
<td>岩沼</td>
<td>ハロゲン化アルキルの置換反応（1）</td>
<td>ハロゲン化アルキルの性質、構造、命名、および、求核置換反応の概念について理解する。</td>
</tr>
</tbody>
</table>
9 叶 ハロゲン化アルキルの置換反応（2）
求核置換反応の種類（S_N2 反応と S_N1 反応）、S_N2 反応の反応機構について理解する。

10 叶 ハロゲン化アルキルの置換反応（3）
S_N1 反応の反応機構について理解する。

11 叶 ハロゲン化アルキルの置換反応（4）
S_N1 反応および S_N2 反応に影響を与える要因について理解する。

12 叶 ハロゲン化アルキルの脱離反応（1）
脱離反応の概念、脱離反応生成物としてのアルケンの構造、物性について理解する。

13 叶 ハロゲン化アルキルの脱離反応（2）
脱離反応の E2 機構と E2 機構に影響を与える要因について理解する。

14 叶 ハロゲン化アルキルの脱離反応（3）
脱離反応の E1 機構と E1 機構に影響を与える要因について理解する。

15 叶 ハロゲン化アルキルの脱離反応（4）
E2 反応と立体化学の関係、S_N1、S_N2、E1、E2 反応を決める因子について理解する。

[成績評価方法]
筆記試験と出席状況をもとに評価する。

[教科書]
「スミス 基礎有機化学(上・下) 第3版」 J.G. Smith 著、山本尚・大鳥幸一郎 監訳 化学同人 (2012)
有機化学２

配当学年（セメスター） 1年（2）
単位数 2
担当教員 植東 義則、田中 好幸

【目的と概要】
有機化学２では化学反応の理解を深めるために、まずアルコール、エーテル、エポキシドの構造、性質、反応について学習する。次にアルケンおよびアルキンの構造、性質、反応について学び、多段階合成の基礎を習得する。また、アルケンおよびアルキンの水素化、およびアルケン、アルキン、アルコールの酸化反応について学び、グリーンケミストリーの概念を習得する。さらに、ラジカルに機構によるアルケンおよびアルキン炭素上のハロゲン化反応を学ぶことにより、ラジカルの性質について基本的知識を習得する。

【学習の到達目標】
- アルコール、エーテル、エポキシドの構造、命名法、化学的性質、およびそれらの反応について説明できるようになる。
- アルケンおよびアルキンの構造、命名法、性質について説明できるようになる。
- アルケンおよびアルキンへの付加反応の機構、位置選択性、立体化学について説明できるようになる。
- アセチルダイオキサンを用いた炭素-炭素結合形成反応について説明できるようになる。
- 選元反応および酸化反応について説明できるようになる。
- ラジカル機構によるハロゲン化反応について説明できるようになる。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>植東</td>
<td>アルコール、エーテル、エポキシド（1）</td>
<td>アルコール、エーテル、エポキシドの構造、性質、命名について理解する。</td>
</tr>
<tr>
<td>2</td>
<td>植東</td>
<td>アルコール、エーテル、エポキシド（2）</td>
<td>アルコール、エーテル、エポキシドの合成について理解する。</td>
</tr>
<tr>
<td>3</td>
<td>植東</td>
<td>アルコール、エーテル、エポキシド（3）</td>
<td>アルコールの反応について理解する。</td>
</tr>
<tr>
<td>4</td>
<td>植東</td>
<td>アルコール、エーテル、エポキシド（4）</td>
<td>エーテル、エポキシドの反応について理解する。</td>
</tr>
<tr>
<td>5</td>
<td>植東</td>
<td>アルケン（1）</td>
<td>アルケンの構造、性質、命名、および合成について理解する。</td>
</tr>
<tr>
<td>6</td>
<td>植東</td>
<td>アルケン（2）</td>
<td>ハロゲン化水素の付加、水和反応、ハロゲン化反応の機構および、その立体化学について理解する。</td>
</tr>
</tbody>
</table>
1. アルケン (3) ヒドロホウ素化反応 — 酸化反応について理解する。

2. アルケン (1) アルケンの構造、性質、命名について理解する。

3. アルケン (2) アルケンへの付加反応について理解する。

4. アルケン (3) アセチルリオニオンを用いる炭素 — 炭素結合形成反応を理解し、多段階合成の基礎を理解する。

5. アルケンおよびアルケンの水素化について理解する。

6. アルケン、アルケン、アルコールの酸化について理解し、グリーンケミストリーの概念を理解する。

7. ラジカル反応 (1) ラジカルの構造と特性を理解し、アルカンのハロゲン化反応の機構を理解する。

8. ラジカル反応 (2) ラジカルによるハロゲン化反応の立体化学について理解する。

9. ラジカル反応 (3) アリル炭素上でのラジカルによるハロゲン化反応を理解する。

[成績評価方法]

筆記試験と出席状況をもとに評価する。

[教科書]

「スミス基礎有機化学（上・下）第3版」 J. G. Smith 著、山本尚・大鳥幸一郎監訳、化学同人（2012）
授業科目名 分析化学 1
配当学年（セメスター） 1年（2）
単位数 2
担当教員 大江 知行、後藤 貴章

[目的と概要]
健康の維持、病状の治療を目的として用いられる医薬品の品質については、それぞれに厳格な規格が
設定されている。そのため、医薬品の純度や含有量を分析するうえで、信頼度の高い測定法が不可欠で
ある。今日、様々な手法がこの目的に用いられるが、本講では、日本薬局方収載医薬品の定量法を中心
に理解することを目的とする。

[学習の到達目標]
各種化学平衡に関する基本的知識を身につけ、それらを説明できる。溶液の pH を計算でき、緩衝作
用を説明できる。このような重量分析法、容量分析法による物質の定量に必要な基礎的知識を修得する
とともに、水溶液中での物質の性質を理解する。

[授業内容]

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
</table>
| 1 | 大江 | 分析化学概論 | 「なにが」、「どこに」、「どれだけあるかを明らかにする分析化学について、被検物、生体成を例に動態解析とも重ね合わせな
がら全体像を捉える。 |
| 2 | 大江 | 定量薬品分析総論 | 分析化学における定量薬品分析の位置づけについて考え、分析のための計算法、有効数字の取り扱い、分析値の評価法について
理解する。 |
| 3 | 大江 | 天秤と重量分析法 | 定量分析化学の基本である化学天秤による重量の測定について考え、医薬品の重量分析法について理解する。 |
| 4 | 後藤 | 容量分析総論 | 標準液による滴定に基づく容量分析について、分配、操作法、標準液の調製と標定などについて理解する。 |
| 5 | 後藤 | 酸塩基滴定Ⅰ | 酸、塩基の概念、電離平衡など、酸塩基滴定の基礎を学ぶ。 |
| 6 | 後藤 | 酸塩基滴定Ⅱ | 酸塩基平衡について理解し、各種酸、塩基及びその塩の水溶液の pH 計算法を修得する。 |
| 7 | 後藤 | 酸塩基滴定Ⅲ | 多塩基酸、多酸塩基、及びその塩や緩衝液の pH 計算法を修得し、酸塩基滴定の各滴定点の pH の計算法を理解する。 |
| 8 | 後藤 | 酸塩基滴定 IV | 酸塩基滴定における終点の判定法を理解し、日本薬局方記載医薬品の定量について、系統的に理解する。 |
9 大江 キレート滴定Ⅰ キレート滴定の原理について錯生成反応との関連や、それに基づく終点判定法を含めて理解する。
10 大江 キレート滴定Ⅱ キレート滴定による日本薬局方記載薬晶の定量について、系統的に理解する。
11 大江 沈殿滴定 沈殿生成反応と溶解度積の関連や終点の判定法を理解し、沈殿滴定による日本薬局方記載薬晶の定量について、系統的に理解する。
12 大江 酸化還元滴定Ⅰ 酸化還元反応の概念について考え、これに基づく滴定法の理論を酸化還元平衡との関連を含めて理解する。
13 大江 酸化還元滴定Ⅱ 酸化還元滴定のうち、過マンガン酸塩滴定法、ヨウ素滴定法による日本薬局方記載薬晶の定量について、系統的に理解する。
14 大江 非水滴定 非水溶媒中で行われる滴定（主に酸塩基滴定）の原理と日本薬局方記載薬晶の定量について理解する。
15 大江・後藤 演習 日本薬局方記載薬晶の定量について系統的に理解する。

【成績評価方法】
主に筆記試験を基礎に評価する。

【教科書】「パートナー分析化学Ⅰ 改訂第2版」萩中 淳・山口政俊・千熊正彦編、南江堂（2012）

【参考書】「図解とフローチャートによる定量分析」浅田誠一、内出 茂、小林基宏共著、技報堂出版株式会社（1987）
「機器による薬晶分析」 山川浩司、鈴木良彦編、講談社サイエンティフィック（1994）
「分析化学反応の基礎」 日本分析化学会北海道支部・東北支部共編、培風館（1994）
「定量薬晶分析」 百瀬 勉著、廣川書店（1989）
「新分析化学実験」 日本分析化学会北海道支部・東北支部共編、化学同人（1989）
「定量分析化学」河合 聡、木下俊夫、辻 章夫、渡辺光男著、丸善（1993）
授業科目名：物理化学１
配当学年（セメスター）：1年（2）
単位数：2
担当教員：三浦 隆史

【目的と概要】
分子の性質・構造を量子論に基づいて理解するための基礎知識と理論的思考法を修得することが「物理化学１」の目標である。分子科学は、医薬品の分析、機能解析、創製を分子レベルで考える上でも重要であり、その重要性は今後益々増大する。「物理化学１」では、分子の電子状態を中心にテーマとして、分子軌道法の基礎、および電子スペクトルの分子構造解析への応用を修得する。本科目の履修は、4セメスターの授業科目である「構造化学」の履修に不可欠である。

【学習の到達目標】
・ 分子軌道法の概念を理解し、水素分子のσ軌道、エチレンとブタジエンのπ軌道の波動関数とエネルギーを計算できるようになる。
・ 分子軌道計算の結果をもとに、結合性軌道と非結合性軌道に関する理解を深める。
・ 分子の形や分子軌道の対称性をもとに、電子移動の許容・禁止を判定できるようになる。
・ π-π*、n-π*、δ-δ移動など種々の電子配置について、例を挙げて説明できるようになる。
・ 分子の電子配置に基づく分光手法として汎用される紫外・可視吸収、蛍光、円二色性の原理、測定法、および分子構造解析への応用を習得する。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項 目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>三浦</td>
<td>分子軌道法（1）</td>
<td>電子状態の量子力学的計算における一電子近似、LCAO MO近似について理解する。これらの近似のもとに水素分子の分子軌道を作り、変分法による永年方程式の作成とその解法を理解する。</td>
</tr>
<tr>
<td>2</td>
<td>三浦</td>
<td>分子軌道法（2）</td>
<td>単純ヒュッケル近似でエチレンとブタジエンのπ電子状態のエネルギーと波動関数を求め、電子基底、励起状態について基礎的な理解を得る。</td>
</tr>
<tr>
<td>3</td>
<td>三浦</td>
<td>分子軌道法（3）</td>
<td>分子軌道計算から得られた、エチレンとブタジエンのπ軌道のエネルギーをもとに、結合の形成による安定化、およびπ電子が非局在化することによる安定化について理解する。また、π電子共役系の広がりと吸収する光の波長の関係を理解する。</td>
</tr>
<tr>
<td>4</td>
<td>三浦</td>
<td>分子の対称性と群論</td>
<td>分子の対称性に関する基礎を学び、分子にどのような対称操作があるかを見つけられるようになる。対称操作の集合が群の定義を満たすこと、また各分子に対する対称操作の集合は点群を形成することを理解する。</td>
</tr>
<tr>
<td>5</td>
<td>三浦</td>
<td>分子の対称性と群論</td>
<td>対称操作が行列で表されること、および行列の対角要素の和である指標の性質について理解する。</td>
</tr>
</tbody>
</table>

— 10 —
6 三浦 分子の対称性と群論（3）指標表
指標表の各項目の意味および既約表現の種類（対称種）について理解する。また、指標表を用いて、可約表現を既約表現の和に簡約する方法を理解する。

7 三浦 電子状態の対称性
エチレンとプロトジェンについて、一電子準位の対称性をポアトン関数の形から求める。多電子配置の対称性を各一電子準位の対称性から導かれる方法を学ぶ。

8 三浦 電子状態間の遷移の許容性
電子状態間の遷移が許容であるか、禁制であるかを、軌道の対称性を利用して判定する方法を学ぶ。

9 三浦 電子移動の種類
π-π*、n-π*など種々の電子移動について理解する。また、基底状態、励起状態のエネルギーに与える溶媒の効果と電子スペクトルの関係について理解する。

10 三浦 種々の分子の電子状態と電子スペクトル
ペンゼン、ホルムアミドなどの具体的な分子について、π-π*、n-π*移動の許容性を電子状態の対称性から求め、実測のスペクトルと比較する。

11 三浦 金属錯体の電子スペクトル
配位子場によるd軌道のエネルギー準位の分裂と、d軌道間の電子移動（d-d 遷移）について理解し、金属錯体が色を呈する理由を説明できるようになる。

12 三浦 フランク・コンドンの原理
分子の各電子状態にはさらに細い複数の振動状態が付随することを基礎としてフランク・コンドンの原理を学び、電子状態間移動と吸収スペクトルの形状に関する理解を深める。

13 三浦 蛍光と励起光
電子状態間の遷移に伴ない吸収された光エネルギーの分子内の変換と放出の過程について理解する。

14 三浦 電子スペクトルの応用
紫外・可視吸収や蛍光スペクトルの測定原理を学び、スペクトルからどのような分子構造情報を得られるか理解する。

15 三浦 電子スペクトルの応用
（2）円二色性
光学活性分子が示す性質である旋光性と円二色性の原理を学び、これらからどのような分子構造情報が得られるか理解する。

[成績評価方法]
定期試験（80%）と授業中に行なうテスト（20%）の結果により評価する。
[参考書] 「アトキンス 物理化学 第8版」P.W. Atkins 著、千原・中村 訳、東京化学同人
 「物理化学（上）」桜野 豊 編、共立出版
 「分子の対称と群論」中崎昌雄著、東京化学同人

—11—
授業科目名 機能形態学２ 配当学年（セメスター）１年（2）
単位数 2
担当教員 佐藤 博、高橋 信行
福永 浩司、塩田 倫史

【目的と概要】
心臓・血管系、腎・泌尿器系、内分泌系、および中枢・末梢神経系をとりあげ、形態と役割ならびに機能を発現する機序を理解する。各機能の関係をもとに、生体の恒常性維持機構を理解する。また、疾病との関係や薬物の作用にも触れる。機能形態学１と共に、本講義は病理生理と薬物治療に関連した科目を学ぶための基礎となるものである。

【学習の到達目標】
心臓血管、腎臓、内分泌、および神経における疾患の成り立ちを理解するために、各組織の機能的役割と構造を理解する。さらに、中枢・末梢神経を介して骨格筋・消化管運動、循環、内分泌における生理機能の恒常性がどのようにして維持されているのか理解する。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>高橋</td>
<td>心臓・血管（1）</td>
<td>血液循環は生体維持機構の根幹である。心臓、動脈系、静脈系の役割と調節機構について学び、疾患との関連を総合的に理解する。</td>
</tr>
<tr>
<td>2</td>
<td>高橋</td>
<td>心臓・血管（2）</td>
<td>心臓及び栄養血管（冠動脈など）の解剖と心電図を含む刺激伝導について理解する。虚血性心疾患、不整脈についても学ぶ。また、血管の構造と機能について学び、血圧の調節機構について理解する。</td>
</tr>
<tr>
<td>3</td>
<td>高橋</td>
<td>腎臓（1）</td>
<td>腎臓は血液を尿に変える過程で体液量、電解質、酸塩基平衡の調節を行う。腎臓を構成する基本単位ネフロニンの構造、生理機能を理解する。</td>
</tr>
<tr>
<td>4</td>
<td>高橋</td>
<td>腎臓（2）</td>
<td>腎尿細管の生理的役割、機能について学び、また腎機能の調節機構について理解する。</td>
</tr>
<tr>
<td>5</td>
<td>佐藤</td>
<td>内分泌（1）</td>
<td>内分泌系は全身の生体機能維持・制御に関わる重要な機構である。視床下部・下垂体・副腎系について、分泌されるホルモンとその調節機構を理解する。</td>
</tr>
<tr>
<td>6</td>
<td>佐藤</td>
<td>内分泌（2）</td>
<td>甲状腺・副甲状腺系、腺腫氏島などについて、分泌されるホルモンとその調節機構を理解する。</td>
</tr>
<tr>
<td>7</td>
<td>佐藤</td>
<td>内分泌（3）</td>
<td>副腎、性腺、また内分泌腺としての腎臓について、分泌されるホルモンとその調節機構を理解する。</td>
</tr>
<tr>
<td>8</td>
<td>中間試験</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
9 塩田 中枢神経（1）
中枢神経系における脳・脊髄の構造と、その機能及び役割について理解する。

10 塩田 中枢神経（2）
中枢神経系における血管の種類及びその役割について学び、血管が閉塞した場合の代表的な疾患について理解する。また中枢神経系の形態や機能の測定評価方法を理解する。

11 塩田 中枢神経（3）
睡眠障害、記憶障害、てんかん、広汎性発達障害などの高次脳機能障害の機序と関与する脳部位について理解する。

12 塩田 末梢神経
自律神経・体性神経系による生体機能の調節機構を、神経伝達物質、受容体や細胞内情報伝達系など分子レベルで理解する。

13 福永 感覚器（1）
感覚器系のうち、体性感覚、内臓感覚、視覚の神経伝達路と関係する器官の構造と機能について理解する。

14 福永 感覚器（2）
感覚器系のうち、聴覚、平衡感覚、味覚、嗅覚の神経伝達路と関係する器官の構造と機能について理解する。

15 福永 筋組織
骨格筋と平滑筋の構造と収縮制御機構について理解する。

【成績評価方法】
レポート、中間試験、定期試験および出席状況で評価する。

【教科書】「機能形態学 改訂第3版」重信弘毅 編集 南江堂
【参考書】「ギャノン生理学 原書23版」岡田康伸 監訳、丸善
授業科目名：生化学1
配当学年（セメスター）：1年（2）
単位数：2
担当教員：倉田 祥一朗

【目的と概要】
医薬品の対象である生体の機能を理解し、病態に正確に対応するためには、生体を構成している各種成分そのもの、そしてその機能に対する生化学的解釈が不可欠と言える。生化学1では、生体を構成する糖、アミノ酸、タンパク質、脂質、核酸等の生体成分とそれらの関連成分の構造と機能について学習する。

【学習の到達目標】
生体構成成分の基本的構造、性質、役割を説明できるようになると共に、分子の柔軟性と溶解性、分子間の会合、タンパク質の立体構造について理解できるようになる。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>倉田</td>
<td>炭水化物の分類</td>
<td>炭水化物はグルコースのような小分子からでんぶん、セルロースのような高分子までを含み、スケールの大きな化合物群である。その分類と命名法を理解する。</td>
</tr>
<tr>
<td>2</td>
<td>倉田</td>
<td>炭水化物の立体化学1</td>
<td>代表的な単糖類の立体化学や立体異性体について、Fischer投影式を用いる標準的な表し方や、D, L 表示法と R, S 表示法との関連を理解する。</td>
</tr>
<tr>
<td>3</td>
<td>倉田</td>
<td>炭水化物の立体化学2</td>
<td>Haworth投影式を用いる単糖の環状構造の表示法、単糖の立体配座、単糖に特有な反応について理解する。</td>
</tr>
<tr>
<td>4</td>
<td>倉田</td>
<td>多糖類</td>
<td>デンプンやセルロースなど、多糖類は何百から何千もの単糖類が連結した高分子化合物である。結合様式による高分子構造、あるいは化学的性質の相違を理解する。</td>
</tr>
<tr>
<td>5</td>
<td>倉田</td>
<td>細胞表面上の炭水化物</td>
<td>細胞表面上の炭水化物は細胞の認識機構に重要な働きをしていたことを理解する。</td>
</tr>
<tr>
<td>6</td>
<td>倉田</td>
<td>アミノ酸1</td>
<td>タンパク質を構成するアミノ酸の種類とアミノ酸特有の性質などについて、その構造の側面から理解する。</td>
</tr>
<tr>
<td>7</td>
<td>倉田</td>
<td>アミノ酸2</td>
<td>α-アミノ酸の合成およびR, S アミノ酸の光学分割法について理解する。</td>
</tr>
<tr>
<td>8</td>
<td>倉田</td>
<td>ペプチド</td>
<td>ペプチドに含まれる複数のアミノ酸の同定法あるいは結合順の決定法について理解する。</td>
</tr>
<tr>
<td>9</td>
<td>倉田</td>
<td>タンパク質1</td>
<td>すべての生体組織を構成するタンパク質はアミノ酸類が結合した高分子化合物である。タンパク質の分類、構造および機能について理解する。</td>
</tr>
</tbody>
</table>
10 倉田 タンパク質 2 すべての生体組織を構成するタンパク質はアミノ酸類が結合した高分子化合物である。タンパク質の分類、構造および機能について理解する。

11 倉田 細胞膜を構成する脂質 細胞膜の主要な脂質成分について、その構造と機能を理解する。

12 倉田 核酸の構造 核酸の塩基部分が主として 2 種類の複合環式化合物、ピリミジンおよびプリンから成ることを理解し、ついで、核酸の構造について理解する。

13 倉田 DNA の構造と複製 DNA の構造と複製について理解する。

14 倉田 転写と翻訳 RNA の合成（転写）とタンパク質の生合成（翻訳）について理解する。

15 倉田 遺伝子とゲノム 遺伝子とゲノムについて化学物質としての側面から理解する。

[成績評価方法]
筆記試験を基礎に総合的に評価する。

[教科書] 「ベーシック薬学シリーズ 生化学」中西義信編、化学同人（2012）
[参考書] 「マッキーバ生化学 第4版」Trudy McKee, James R. McKee 著、市川厚監修、福岡伸一監訳（2010）
薬学概論2

授業科目名

配当学年（セメスター） 2年（3）

単位数 1

担当教員 村井ユリ子、富永敦子
佐野諒一、千葉健治
柳潤一、最上知子
池田浩治、高崎涉

[目的と概要]

薬学生として将来の目標を明確にするためには、病院、薬局、製薬企業、試験研究機関、行政機関など薬学の卒業生が活躍する現場の様子を実際に見聞きすることが重要である。本授業では早期体験学習としてそれぞれの現場で活躍されている専門家の話を聞く。

[学習の到達目標]

薬学を積極的に学ぶ志を高め、将来の目標を見出すために、薬学部卒業生が活躍する病院、薬局、製薬企業、試験研究機関などの現場の仕事を理解する。

[授業内容]

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>講義題目</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>村井</td>
<td>医療人としての病院薬剤師の働きと使命</td>
</tr>
<tr>
<td>2</td>
<td>最上</td>
<td>医薬品・食品・生活化学物質の安全を守る国立衛研の役割と研究</td>
</tr>
<tr>
<td>3</td>
<td>富永</td>
<td>地域医療における薬剤師の役割</td>
</tr>
<tr>
<td>4</td>
<td>池田</td>
<td>医薬・医療機器開発の現状と課題</td>
</tr>
<tr>
<td>5</td>
<td>千葉</td>
<td>製薬会社における医薬品の研究開発プロセス：新規免疫抑制薬の研究開発を1例として</td>
</tr>
<tr>
<td>6</td>
<td>佐野</td>
<td>医薬品のGlobal開発とPMDAの役割について</td>
</tr>
<tr>
<td>7</td>
<td>柳</td>
<td>新薬への挑戦：製薬企業における薬物研究</td>
</tr>
<tr>
<td>8</td>
<td>未定</td>
<td></td>
</tr>
</tbody>
</table>

[成績評価方法] 出席状況とレポート

[教科書及び参考書] 指定しない。

＊各講師の授業実施日は別途連絡する。
授業科目名 有機化学 3
配当学年（セメスター） 2年（3）
単位数 2
担当教員 土井 隆行、増田 裕一

[目的と概要]
有機化学3では、各種分析法や分光法を用いた有機化合物の構造決定法、および共役した化合物の性質、反応性、ならびに芳香族化合物の性質、反応性について学習する。

[学習の到達目標]
・ 機器分析[質量分析法, 赤外分光法, 核磁気共鳴(NMR)分光法]による簡単な有機化合物の構造決定ができるようになる。
・ 共役化合物の特徴を説明でき、共鳴混成体を書けるようになる。
・ 速度論支配の反応と熱力学支配の反応について説明できるようになる。
・ Diels-Alder 反応を説明できるようになる。
・ 芳香族化合物の化学的性質と反応性について説明できるようになる。
・ 芳香族求電子置換反応の機構とベンゼン環に対する置換基導入法について説明できるようになる。
・ ベンゼン環上の置換基効果を理解し、多置換ベンゼンの合成法について説明できるようになる。
・ 芳香族求核置換反応を説明できるようになる。
・ ベンゼン族について説明できるようになる。

[授業内容]

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>増田</td>
<td>質量分析法と赤外分光法(1)</td>
<td>分子量、分子式、および化合物の構造上の特徴を決定するため用いられる質量分析法について学ぶ。</td>
</tr>
<tr>
<td>2</td>
<td>増田</td>
<td>質量分析法と赤外分光法(2)</td>
<td>有機化合物中の官能基の種類を決定するために用いられる赤外分光法について学習する。</td>
</tr>
<tr>
<td>3</td>
<td>増田</td>
<td>NMR 分光法(1)</td>
<td>核磁気共鳴(NMR)分光法におけるしゃべい、化学シフト、およびシグナルの積分などのスペクトル解析の基礎を学ぶ。</td>
</tr>
<tr>
<td>4</td>
<td>増田</td>
<td>NMR 分光法(2)</td>
<td>1H NMR スペクトルにおけるシグナルの分裂およびカップリング定数について学び、スペクトル解析の方法を理解する。</td>
</tr>
<tr>
<td>5</td>
<td>増田</td>
<td>NMR 分光法(3)</td>
<td>13C NMR スペクトルや二次元NMRスペクトルなど、より高度なNMR分光法について学習する。</td>
</tr>
<tr>
<td>6</td>
<td>土井</td>
<td>共役、共鳴、ジェン(1)</td>
<td>共役、共鳴を理解し、共鳴混成体について学習する。</td>
</tr>
<tr>
<td>7</td>
<td>土井</td>
<td>共役、共鳴、ジェン(2)</td>
<td>共役ジェンの求電子付加反応と反応の熱力学支配と速度論支配について学ぶ。</td>
</tr>
</tbody>
</table>
8. 土井 共役、共鳴、ジェン（3）
Diels-Alder 反応について学ぶ。

9. 土井 ベンゼンと芳香族化合物（1）
芳香族性の定義、芳香族炭化水素と芳香族ヘテロ環化合物について学び、芳香族性が化学的性質と反応性に与える影響を学習する。

10. 土井 ベンゼンと芳香族化合物（2）
π分子軌道について学ぶ。

11. 土井 芳香族求電子置換反応（1）
芳香族求電子置換反応の機構について理解し、ベンゼンのハログエン化、ニトロ化、およびスルホン化反応による一置換ベンゼンの合成法を学ぶ。

12. 土井 芳香族求電子置換反応（2）
ベンゼンの Friedel-Crafts アルキル化およびアシル化反応による一置換ベンゼンの合成法を学ぶ。

13. 土井 芳香族求電子置換反応（3）
ベンゼン環上の置換基が芳香族求電子置換反応に及ぼす反応性の効果、および配向性について学ぶ。

14. 土井 芳香族求電子置換反応（4）
二置換および三置換ベンゼンの合成法について学ぶ。また、ベンゼン上の置換基の反応について学習する。

15. 土井 芳香族求電子置換反応（5）
芳香族求核置換反応の合成化学的応用について学ぶ。また、芳香族求核置換反応、およびベンサイン経由の反応について学習する。

[成績評価方法]
筆記試験により評価する。

[教科書]
「スミス基礎有機化学（上・下）第3版」 J. G. Smith 著、山本尚・大島幸一郎 監訳 化学同人（2012）
授業科目名 | 生薬学 1 | 配当学年（セメスター） | 2年（3） |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>單位数</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>担当教員</td>
<td>大島 吉輝</td>
</tr>
</tbody>
</table>

【目的と概要】
生薬学 1 では、医薬品として重要な生薬の基本的知識の修得を目的として、その基原、性状、含有成分、生合成、薬効・用途などを学ぶ。

【学習の到達目標】
重要な生薬の基原、性状、含有成分、生合成、薬効・用途などを説明できる。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大 島</td>
<td>序論</td>
<td>生薬の歴史を学ぶ。</td>
</tr>
<tr>
<td>2</td>
<td>大 島</td>
<td>生薬成分の生合成 1</td>
<td>生薬成分の生合成経路の全体像を学ぶ。</td>
</tr>
<tr>
<td>3</td>
<td>大 島</td>
<td>生薬成分の生合成 2</td>
<td>同上</td>
</tr>
<tr>
<td>4</td>
<td>大 島</td>
<td>テルペノイドの構造と生合成</td>
<td>テルペノイドの生合成経路とともに、薬学にとって重要な成分の化学構造、化学的性質を学ぶ。</td>
</tr>
<tr>
<td>5</td>
<td>大 島</td>
<td>ステロイドの構造と生合成</td>
<td>ステロイドの生合成経路とともに、薬学にとって重要な成分の化学構造、化学的性質を学ぶ。</td>
</tr>
<tr>
<td>6</td>
<td>大 島</td>
<td>アルカロイドの構造と生合成 1</td>
<td>アルカロイドの生合成経路とともに、薬学にとって重要な成分の化学構造、化学的性質を学ぶ。</td>
</tr>
<tr>
<td>7</td>
<td>大 島</td>
<td>アルカロイドの構造と生合成 2</td>
<td>同上。</td>
</tr>
<tr>
<td>8</td>
<td>大 島</td>
<td>フラボノイドの構造と生合成</td>
<td>フラボノイドの生合成経路とともに、薬学にとって重要な成分の化学構造、化学的性質を学ぶ。</td>
</tr>
<tr>
<td>9</td>
<td>大 島</td>
<td>フェニルプロパノイドの構造と生合成</td>
<td>フェニルプロパノイドの生合成経路とともに、薬学にとって重要な成分の化学構造、化学的性質を学ぶ。</td>
</tr>
<tr>
<td>10</td>
<td>大 島</td>
<td>ポリケチドの構造と生合成</td>
<td>ポリケチドの生合成経路とともに、薬学にとって重要な成分の化学構造、化学的性質を学ぶ。</td>
</tr>
<tr>
<td>11</td>
<td>大 島</td>
<td>代表的な薬用植物 1</td>
<td>生薬の原料となる代表的な薬用植物の含有成分、薬効・用途を学ぶ。</td>
</tr>
<tr>
<td>12</td>
<td>大 島</td>
<td>代表的な薬用植物 2</td>
<td>同上。</td>
</tr>
<tr>
<td>13</td>
<td>大 島</td>
<td>代表的な薬用植物 3</td>
<td>同上。</td>
</tr>
<tr>
<td>14</td>
<td>大 島</td>
<td>代表的な薬用植物 4</td>
<td>同上。</td>
</tr>
</tbody>
</table>
[成績評価方法]
出席状況と定期試験により評価する。

[教科書] 「ベーシック薬学教科書シリーズ7 生薬学・天然物化学」吉川雅之編、化学同人（2008）
授業科目名：物理化学2
配当学年（セメスター）：2年（3）
単位数：2
担当教員：安斎順一，佐藤勝彦

[目的と概要]
本授業科目では、2セメで修得した授業科目「化学B」の理解を基礎として、相平衡、界面、電解質溶液などを物理化学的に理解することを目的とする。本科目は、化学物質としてのくすりや生体との相互作用および種々の材料の医薬への応用を理解するうえで基礎となる重要な科目である。

[学習の到達目標]
部分モルと化学ポテンシャル、ラウールの法則、ヘンリーの法則などを理解するとともに、束一的性質の扱いを把握する。また、界面の現象の特徴を理解する。さらに、電解質溶液の性質と電極系の理解およびその測定法への利用、などについて把握することを目標とする。

[授業内容]

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項 目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>安斎</td>
<td>相平衡1</td>
<td>低分子量の非電解質を成分とする溶液の特徴を理解し、溶液の濃度の記述の方法について認識を深める。</td>
</tr>
<tr>
<td>2</td>
<td>安斎</td>
<td>相平衡2</td>
<td>部分モルと化学ポテンシャルの概念について理解する。</td>
</tr>
<tr>
<td>3</td>
<td>安斎</td>
<td>相平衡3</td>
<td>理想溶液とラウールの法則、非理想溶液とヘンリーの法則について学ぶ。</td>
</tr>
<tr>
<td>4</td>
<td>安斎</td>
<td>相平衡4</td>
<td>溶液平衡と束一的性質について理解し、浸透圧、凝固点降下、沸点上昇、および蒸気圧降下の算出法を理解する。</td>
</tr>
<tr>
<td>5</td>
<td>安斎</td>
<td>界面1</td>
<td>毛管現象、ねれ、吸着、表面張力などの2相の界面に特徴的な現象を学ぶ。</td>
</tr>
<tr>
<td>6</td>
<td>安斎</td>
<td>界面2</td>
<td>表面張力および界面張力の測定法について、測定装置の構造と測定原理を理解する。</td>
</tr>
<tr>
<td>7</td>
<td>安斎</td>
<td>界面3</td>
<td>界面における吸着と吸着等温式について理解し、物質の吸着量を計算する方法を学ぶ。</td>
</tr>
<tr>
<td>8</td>
<td>佐藤</td>
<td>電解質溶液1</td>
<td>電解質溶液の電気伝導度、イオンの輸率と移動度について理解する。また、強電解質と弱電解質の違いを理解する。</td>
</tr>
<tr>
<td>9</td>
<td>佐藤</td>
<td>電解質溶液2</td>
<td>イオンの活量について理解するとともに、イオン強度の概念および計算方法を学ぶ。</td>
</tr>
<tr>
<td>10</td>
<td>佐藤</td>
<td>電気化学1</td>
<td>化学電池の原理と構造について学び、ファラデーの法則から関連する主物理量を計算する方法を理解する。</td>
</tr>
<tr>
<td>11</td>
<td>佐藤</td>
<td>電気化学2</td>
<td>化学電池を構成する半電池の種類と構造、およびその作動原理について理解する。</td>
</tr>
</tbody>
</table>
12 佐藤 電気化学3
2種類の異なる半電池から構成される化学電池の出力電位を計算する方法を理解する。

13 佐藤 電気化学4
典型的な化学電池であるガラス膜pH電極の構造、原理、および操作法について学ぶ。

14 安斎 電気分析化学1
電極を利用した生体計測法について原理を学ぶ。

15 安斎 電気分析化学2
電極を利用した生体計測法の実際の応用例を学ぶ。

【成績評価方法】定期試験と小試験。
【教科書】「物性物理化学」大島・半田編、南江堂（1999）
【その他】本科目の履修事項は薬剤師国家試験に合格するために必須の内容である。
授業科目名：生化学２ 配当学年（セメスター）：2年（3）
単位数：2
担当教員：青木 淳賢・巻出 久美子

【目的と概要】
生化学２では、タンパク質の構造と機能について学ぶ。タンパク質の性質、構造がタンパク質の機能にどのように関与しているか、そして、生命を維持するための様々な化学反応がタンパク質によりどのように行われているかについて学ぶ。

【学習の到達目標】
タンパク質の構造と機能の関連性、酵素反応の種類、特性、反応速度論について説明できるようになる。また、生体内の代表的な酵素について、具体的な機能と調節機構を説明できる。生体内で機能する様々なタンパク質の名称と機能を説明できる。タンパク質の分析法、機能解析法を説明できる。

【授業内容】

<table>
<thead>
<tr>
<th>回数</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>青木</td>
<td>総論</td>
<td>生化学2の要学領域における意義について理解すると共に、生化学1との連携を理解する</td>
</tr>
<tr>
<td>2</td>
<td>青木・巻出</td>
<td>タンパク質の構造 (I)</td>
<td>アミノ酸の構造とタンパク質の構造を学ぶ</td>
</tr>
<tr>
<td>3</td>
<td>青木・巻出</td>
<td>タンパク質の構造 (II)</td>
<td>タンパク質分子のフォールディングの理論について学ぶ</td>
</tr>
<tr>
<td>4</td>
<td>青木・巻出</td>
<td>タンパク質の構造 (III)</td>
<td>コンホメーションを理解する</td>
</tr>
<tr>
<td>5</td>
<td>青木・巻出</td>
<td>タンパク質の生合成</td>
<td>タンパク質が細胞内で合成される仕組みを理解する</td>
</tr>
<tr>
<td>6</td>
<td>青木・巻出</td>
<td>受容体</td>
<td>受容体の種類、機能について学ぶ</td>
</tr>
<tr>
<td>7</td>
<td>青木・巻出</td>
<td>抗体</td>
<td>抗体の構造・機能を理解する</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>抗体の作製法、応用を理解する</td>
</tr>
<tr>
<td>8</td>
<td>青木・巻出</td>
<td>酵素(I)</td>
<td>酵素の性質について学ぶ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>酵素反応速度論について学ぶ</td>
</tr>
<tr>
<td>9</td>
<td>青木・巻出</td>
<td>酵素(II)</td>
<td>酵素反応の調節機構を理解する</td>
</tr>
<tr>
<td>10</td>
<td>青木・巻出</td>
<td>タンパク質研究(I)</td>
<td>タンパク質の発現・機能を解析する手法を理解する</td>
</tr>
<tr>
<td>11</td>
<td>青木・巻出</td>
<td>タンパク質研究(II)</td>
<td>セントラルドッグを理解し、核酸（DNA/RNA）の構造と機能を復習する</td>
</tr>
<tr>
<td>12</td>
<td>青木・巻出</td>
<td>タンパク質研究(III)</td>
<td>タンパク質を操る遺伝子工学を学ぶ</td>
</tr>
</tbody>
</table>
13 青木・巻出 細胞骨格タンパク質 細胞骨格タンパク質の種類・機能を学ぶ
14 青木・巻出 細胞接着タンパク質 細胞の接着機構を理解し、細胞接着タンパク質の種類・機能を学ぶ
15 青木・巻出 試験 授業部分についての理解度を確認する

【成績評価方法】
主に出席状況と筆記試験を基礎に評価する。

【教科書】
Essential 細胞生物学 中村桂子・松原薰一 監訳（南江堂）
ベーシック薬学教科書シリーズ「生化学」 中西義信 編（化学同人）

【参考書】
MOLECULAR BIOLOGY OF THE CELL 第5版
Alexander Johnson, Julian Lewis 他 Bruce Alberts
ヴォート生化学（上） 第4版 田宮信雄 他 訳、東京化学同人
授業科目名: 生化学3
配当学年（セメスター）: 2年（3）
単位数: 2
担当教員: 倉田 祥一郎、矢野 環
山國 徹

【目的と概要】
生化学3では、生体反応や細胞間および細胞内情報伝達にかかわるタンパク質の構造と機能について学ぶ。これらのタンパク質の構造がタンパク質の機能発現にどのように関与しているか、また、薬物の作用やがんなどの病気を理解する上で重要な情報伝達および遺伝子発現において必須なタンパク質の分子の特性について学ぶ。

【学習の到達目標】
生体反応や情報伝達にかかわるタンパク質の構造と機能、およびがんや中枢神経疾患などの病気におけるタンパク質の機能異常について説明できるようになる。

【授業内容】
<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>倉田</td>
<td>序論</td>
<td>生体反応や情報伝達に関する生化学の薬学領域における意義について理解する。</td>
</tr>
<tr>
<td>2</td>
<td>矢野</td>
<td>細胞間情報伝達に関わるタンパク質</td>
<td>ポリペプチドホルモン分子の構造と機能について学ぶ。</td>
</tr>
<tr>
<td>3</td>
<td>矢野</td>
<td>細胞内情報伝達に関わるタンパク質（I）</td>
<td>受容体分子の構造的特徴および機能制御機構について学ぶ。</td>
</tr>
<tr>
<td>4</td>
<td>矢野</td>
<td>細胞内情報伝達に関わるタンパク質の構造（II）</td>
<td>タンパク質キナーゼの構造と機能について学ぶ。</td>
</tr>
<tr>
<td>5</td>
<td>倉田</td>
<td>細胞内情報伝達に関わるタンパク質（III）</td>
<td>遺伝子発現を司る転写調節因子の構造的特徴および機能制御機構について学ぶ。</td>
</tr>
<tr>
<td>6</td>
<td>倉田</td>
<td>がんに関わるタンパク質（I）</td>
<td>がんに関わる代表的なタンパク質の本来の生理的機能について学ぶ。</td>
</tr>
<tr>
<td>7</td>
<td>倉田</td>
<td>がんに関わるタンパク質（II）</td>
<td>がんに関わる代表的なタンパク質の変異と機能異常について学ぶ。</td>
</tr>
<tr>
<td>8</td>
<td>山國</td>
<td>神経伝達物質の合成に関わるタンパク質</td>
<td>神経伝達物質の合成酵素の構造とその遺伝子異常による疾患について学ぶ。</td>
</tr>
<tr>
<td>9</td>
<td>山國</td>
<td>回帰タンパク質</td>
<td>回帰タンパク質の特性及びその活性制御機構について学ぶ。</td>
</tr>
</tbody>
</table>
10 山 國 イオンチャンネルタンパク質（I）
イオンチャンネルによる細胞の興奮とイオン動態の制御について学ぶ。

11 山 國 イオンチャンネルタンパク質（II）
イオンチャンネルの構造と機能について学ぶ。

12 山 國 中枢神経変性疾患に関わるタンパク質（I）
代表的な中枢神経疾患の発症に関わるタンパク質の本来の生理的機能について学ぶ。

13 山 國 中枢神経変性疾患に関わるタンパク質（II）
代表的な中枢神経疾患の発症に関わるタンパク質の変異と機能異常について学ぶ。

14 山 國 神経栄養因子タンパク質
神経栄養因子タンパク質分子の構造と機能について学ぶ。

【成績評価方法】
出席、授業の中間で行う中間試験および学期末の定期試験で評価する。

【参考書】 「ベーシック薬学シリーズ 生化学」中西義信編、化学同人
「ヴォート生化学（上）第4版」田宮信雄 他 訳、東京化学同人
「分子細胞生物学 第5版」野田春彦 他 訳、東京化学同人
授業科目名：薬理学Ⅰ
配当学年（セメスター）：2年（3）
単位数：2
担当教員：守屋 孝洋

【目的と概要】
薬理学は、薬物と生体の相互作用を探究する学問であり、その作用は多岐に渡っている。薬の作用を理解するためには、生体のしくみや病気のしくみを知ることが必要であり、その上に立ってはじめて疾患の治療における薬の作用が理解される。薬物の作用を理解していくためには、細胞外の情報伝達物質の理解と、細胞内の情報伝達機構の理解が必須である。本講義では薬物の作用発現を理解する上での基礎的事項を学び、さらに基本的な細胞外情報伝達物質と細胞内情報伝達機構の理解を通じて、薬物の臨床応用と治療効果やその問題点を理解することを目的とする。

【学習の到達目標】
薬物療法の基礎となる知識およびその考え方について理解する。また、基本的な細胞外情報伝達物質と細胞内情報伝達機構を理解することができ、薬物作用機構を考えることができる。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>守屋</td>
<td>薬理学総論</td>
<td>薬理学の歴史、薬の作用様式、用量依存性など、薬の作用を理解するための基礎的な事項を理解する。また、薬物の標的となる生体機能の調節系（神経系、内分泌系など）を理解する。</td>
</tr>
<tr>
<td>2</td>
<td>守屋</td>
<td>薬理学総論</td>
<td>薬効に影響を与える生体側の因子について学ぶ。また、薬物の併用による効果、薬物の使用による薬効の変化、耐性などを主用のみならず副作用発現の面から学ぶ。</td>
</tr>
<tr>
<td>3</td>
<td>守屋</td>
<td>細胞情報伝達: 7回膜貫通型受容体</td>
<td>多くの薬物の標的となる7回膜貫通型受容体とその情報伝達機構について理解する。</td>
</tr>
<tr>
<td>4</td>
<td>守屋</td>
<td>細胞情報伝達: 三量体Gタンパク</td>
<td>7回膜貫通型受容体に関連する三量体Gタンパク質の種類、機能および活性化、不活性化機構について理解する。</td>
</tr>
<tr>
<td>5</td>
<td>守屋</td>
<td>細胞情報伝達: 低分子量Gタンパク質/増殖因子型受容体</td>
<td>細胞内情報伝達における低分子量Gタンパク質の種類、機能および活性化機構や増殖因子型受容体および細胞内受容体を介する細胞の活性化について理解する。</td>
</tr>
<tr>
<td>6</td>
<td>守屋</td>
<td>細胞情報伝達:イオンチャネルおよびトランスポーター</td>
<td>薬物の作用点としてのイオンチャネルおよびトランスポーターについて理解する。</td>
</tr>
<tr>
<td>7</td>
<td>守屋</td>
<td>受容体の解析法</td>
<td>薬物の用量依存性について理解し、アゴニストとアンタゴニストの概念およびその解析法を理解する。さらに受容体結合実験の理論・方法を理解し、それによって得られる情報を理解する。</td>
</tr>
<tr>
<td>8</td>
<td>守屋</td>
<td>生理活性物質: アセチルコリン</td>
<td>中枢神経系および末梢組織で重要な神経伝達物質として働いているアセチルコリンおよびその受容体について、その性質と関連薬物を理解する。</td>
</tr>
</tbody>
</table>
守屋
生理活性物質：カテコラミン
中枢神経系および末梢組織で重要な神経伝達物質として働いているカテコラミンおよびその受容体について、その性質と関連薬物を理解する。

守屋
生理活性物質：生理活性ペプチド
生理活性物質ペプチドの概要について理解し、アンギオテンシンおよびオレシンを例にとり、その機能や創薬への応用について理解する。

守屋
生理活性物質：セロトニン
重要な生理活性物質として知られているセロトニンについて、その性質と関連薬物を理解する。

守屋
生理活性物質：ヒスタミン／アミノ酸
重要な生理物質として知られているヒスタミンおよびアミノ酸について、その性質と関連薬物を理解する。

守屋
生理活性物質：プロスタグランジン／エイコサノイド
プロスタグランジン、ロイコトリエンなどのアラキドン酸代謝物について、それらの性質と関連薬物を理解する。

守屋
生理活性物質：ビタミン
ビタミンについてその種類と作用を理解し、生体機能の調節における意義について理解する。

守屋
時間薬理学
体内時計の動作原理を理解し、薬物の主作用や副作用が時刻によって変化する機構や時間薬物治療について理解する。

【成績評価方法】
筆記試験と出席状況をもとに評価する。

【教科書】「New薬理学」田中千賀子・加藤隆一 編集、南江堂

【参考書】「新薬理学テキスト」佐藤進 編、廣川書店
「新薬理学入門」柳澤朝行 他編著、南山堂
「グッドマン・ギルマン薬理書」藤原元始 他監訳、廣川書店
授業科目名
薬理学２
配当学年（セメスター）２年（３）
単位数　2
担当教員　福永 浩司、森口 茂樹、塩田 倫史

【目的と概要】
薬理学は、薬物と生体の相互作用を探究する学問であり、その領域は非常に広く多岐に渡っている。本講義では、薬物療法の基礎という観点から、薬物が生体の機能に及ぼす影響（薬理作用）とその機序を中心に、薬物の臨床応用と治療効果・副作用を理解する。薬理学２では、薬理作用の基本を理解するために末梢神経系、中枢神経系、呼吸器系、消化器系に作用する薬物をとりあげる。

【学習の到達目標】
薬物療法の基礎となる知識およびその考え方について理解し、さらに薬物が生体機能におよぼす影響を理解する。特に、薬物の持つ主作用、副作用を発現するメカニズムについて理解する。さらに、薬理作用に基づいて臨床における治療効果と副作用を理解する。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>塩 田</td>
<td>末梢神経作用薬総論</td>
<td>自律神経系と体性神経系の役割および神経伝達物質と受容体について学び、これらの神経系の機能を変化させる薬物にはどのようなものがあるかを理解する。</td>
</tr>
<tr>
<td>2</td>
<td>塩 田</td>
<td>自律神経作用薬（１）</td>
<td>交感神経系による臓器機能の調節と薬物の影響を学び、薬物の臨床応用を理解する。</td>
</tr>
<tr>
<td>3</td>
<td>塩 田</td>
<td>自律神経作用薬（２）</td>
<td>副交感神経系による臓器機能の調節と薬物の影響を学び、薬物の臨床応用を理解する。</td>
</tr>
<tr>
<td>4</td>
<td>塩 田</td>
<td>体性神経作用薬</td>
<td>体性知覚神経と体性運動神経の機能に対する薬物の影響をもとに、局所麻酔薬と末梢性筋弛緩薬について理解する。</td>
</tr>
<tr>
<td>5</td>
<td>福 永</td>
<td>中枢神経作用薬総論</td>
<td>生体の恒常性は神経系、内分泌系、免疫系によって調節されている。神経・内分泌系は中枢神経で統合される。薬理学で大切である神経・内分泌・免疫相互に関わって理解する。</td>
</tr>
<tr>
<td>6</td>
<td>森 口</td>
<td>中枢神経薬効評価法</td>
<td>中枢神経系の薬物作用薬は複雑な作用機序を有している。代表的な中枢神経作用薬の薬効を評価する方法を理解する。</td>
</tr>
<tr>
<td>7</td>
<td>森 口</td>
<td>中枢神経作用薬（１）</td>
<td>中枢神経系における伝達物質・受容体・イオンチャネルの関係をもとに、中枢神経疾患治療薬の基本的な作用機序を理解する。</td>
</tr>
<tr>
<td>8</td>
<td>森 口</td>
<td>中枢神経作用薬（２）</td>
<td>全身麻酔薬・催眠薬・抗不安薬・抗うつ薬について理解する。</td>
</tr>
<tr>
<td>9</td>
<td>森 口</td>
<td>中枢神経作用薬（３）</td>
<td>中枢性筋弛緩薬・抗てんかん薬・麻薬性鎮痛薬と薬物依存について理解する。</td>
</tr>
</tbody>
</table>
10 塩 田 中枢神経作用薬
統合失調症治療薬・錐体外路系疾患治療薬について理解する。

11 塩 田 神経変性疾患治療薬
脳循環障害・アルツハイマー型認知症・パーキンソン病・ハンチントン舞蹈病の治療薬について理解する。

12 福 永 呼吸器作用薬
気管支平滑筋の収縮弛緩調節に対する薬物の影響をもとに、
鎮咳薬・去痰薬・気管支喘息治療薬について理解する。

13 福 永 消化器作用薬（1）
神経と消化管ホルモンによる胃酸分泌の調節機構をもとに、
健胃消化薬・胃炎・胃十二指腸潰瘍および腸疾患治療薬を理解する。

14 福 永 消化器作用薬（2）
消化管ホルモンによる消化管機能の調節機構をもとに、肝
臓・胆道・膵臓疾患の病態と治療薬について理解する。

15 福 永 消化器作用薬（3）
腸管免疫の役割と腸管細菌叢バランスに影響を与える薬につ
いて理解する。

【成績評価方法】
レポート、中間試験、定期試験および出席状況で評価する。

【教科書】「N E W薬理学」田中泰子・加藤隆一 編集、南江堂

【参考書】「新薬理学テキスト」佐藤進 編集、廣川書店
「新薬理学入門」柳澤輝行 他編著、南山堂
「グッドマン・ギルマン薬理書」藤原元始 他監訳、廣川書店
薬剤学

薬剤学は人体に適用する医薬品の投与形態と投与後薬物の体内動態に関する学問である。薬剤学の特徴は、関連する学問分野が広いこと、薬学独自の形態に強いつど問分野であることである。本講では、薬剤学を大きく1）剤形論（物理薬剤学）、2）生物薬剤学、および3）特定事項に分類し、薬剤学を体系的かつ原理的に理解することを目的とする。

【学習の到達目標】
・ 薬剤の剤形に関して事実、製造方法、試験法を説明できるようになる。
・ 薬物投与システムについて説明できるようになる。
・ 薬物の体内動態と影響を与える要因について説明できるようになる。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>寺崎</td>
<td>薬剤学概論：剤形と投与経路</td>
<td>薬剤学の目的および範囲を認識し、医薬品の剤形の開発と発展及び医薬品の製剤の投与経路と投与後の吸収経路について理解する。また、医薬品の開発プロセスについて理解する。</td>
</tr>
<tr>
<td>2</td>
<td>寺崎</td>
<td>固形製剤</td>
<td>固形製剤の製剤方法、その特徴及び利点等について理解する。</td>
</tr>
<tr>
<td>3</td>
<td>寺崎</td>
<td>半固形製剤</td>
<td>半固形製剤の製造方法、その製造方法と製剤的特徴について理解する。</td>
</tr>
<tr>
<td>4</td>
<td>寺崎</td>
<td>液状製剤</td>
<td>液状製剤の製造方法、その製造方法と製剤的特徴について理解する。</td>
</tr>
<tr>
<td>5</td>
<td>寺崎</td>
<td>無菌製剤</td>
<td>注射用製剤の製剤的特徴、投与方法及び製造方法について理解する。また、点眼剤、眼軟膏剤の製剤的特徴、投与方法、利点及び製造方法について理解する。</td>
</tr>
<tr>
<td>6</td>
<td>立川</td>
<td>薬物送達システム</td>
<td>新しい剤形である薬物送達システム（D DDS）について理解する。</td>
</tr>
<tr>
<td>7</td>
<td>立川</td>
<td>薬剤の品質管理と製剤試験、安定性</td>
<td>医薬品の有効性及び安全性をある一定期間保つことは重要である。品質保証上重要な点方に定められた製剤試験法を中心に理解する。また、製剤の安定性について理解する。</td>
</tr>
<tr>
<td>8</td>
<td>立川</td>
<td>薬物の生体膜透過</td>
<td>薬物の体内動態及び細胞透過の一つとして重要な細胞膜透過機構について理解する。</td>
</tr>
</tbody>
</table>
9 寺崎 粟物の消化管吸収 経口投与で効果を発現する薬物は、消化管から吸収され全身循環血液中へ移行可能な薬物である。小腸上皮細胞を中心に薬物吸収機構について理解する。

10 立川 粟物の組織分布 薬物が効果を発現するには標的組織に運搬される必要がある。薬物の組織分布過程を制御する因子を理解する。

11 寺崎 粟物の蛋白結合 薬物の消失過程、分布過程、薬効発現過程の全てにおいて重要な因子は蛋白非結合型である。その解析手法と結合機構について理解する。

12 寺崎 腎排泄と胆汁排泄 薬物の消失過程の中で重要な役割を果たしている腎排泄及び胆汁排泄の機構について理解する。

13 寺崎 薬物の肝代謝と初回通過効果 体内の見かけの薬物代謝速度は細胞内での酵素反応以外に種々の要因によって影響される。細胞膜透過性、蛋白結合、血流速度及び投与経路などの影響について理解する。

14 立川 薬物の溶解性と動態 薬物の溶解性は吸収も含めた体内動態に大きく影響を与える要因である。薬物の溶解性に関わる要因および薬物動態への影響について理解する。

15 立川 臨床投与設計と個別化 薬物療法において、個別化の必要性と臨床薬物投与設計理論の重要性について理解する。

【成績評価方法】
出席状況、授業への積極的な参加、筆記試験の成績により総合的に評価する。

【教科書】エピソード薬物動態学—薬物動態学の解説、辻彰総監修、京都薬科大学出版局（2012）
基礎から学ぶ製剤学のサイエンス 増補版、山本恵司監修、エルゼビア・ジャパン（2013）

【参考書】「わかりやすい生物薬剤学 第4版」辻 彰 編、グランキューブ（2008）
「わかりやすい物理薬剤学 第4版」辻 恵・高島 進 編、ウッソ出版（2007）
「臨床薬物動態学 第4版」加藤隆一著、南江堂（2009）
目的と概要
カルボニル基はその通性と反応の多様性から、有機化学を体系的に理解するための最も重要な官能基として位置付けられる。その原理は数種の基本反応によって理解することができる。有機化学4ではカルボニル基の化学を学習する。

【学習の到達目標】
カルボニル化合物、カルボン酸、およびカルボン酸誘導体の基本的な性質、反応性、および合成方法を理解し、基礎的な反応の機構を説明できるようになる。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>徳山・岡野</td>
<td>カルボン酸の基礎</td>
<td>カルボン酸の命名法、構造と物理的性質、分子間水素結合、カルボン酸の合成と一般的な反応について学ぶ。</td>
</tr>
<tr>
<td>2</td>
<td>徳山・岡野</td>
<td>カルボン酸の基礎</td>
<td>カルボン酸の酸性と酸性度（pKₐ値）、分液作業による分離精製法、関連化合物であるスルホン酸とアミノ酸について学ぶ。</td>
</tr>
<tr>
<td>3</td>
<td>徳山・岡野</td>
<td>カルボニル化合物の基礎（1）</td>
<td>カルボニル化合物の一般的な反応、アルデヒドとケトンの還元について学ぶ。</td>
</tr>
<tr>
<td>4</td>
<td>徳山・岡野</td>
<td>カルボニル化合物の基礎（2）</td>
<td>カルボニル基の還元の立体化学、カルボン酸とその誘導体の還元、アルデヒドの酸化について学ぶ。</td>
</tr>
<tr>
<td>5</td>
<td>徳山・岡野</td>
<td>カルボニル化合物の基礎（3）</td>
<td>有機金属反応剤の基礎およびアルデヒドまたはケトンとの反応について学ぶ。</td>
</tr>
<tr>
<td>6</td>
<td>徳山・岡野</td>
<td>カルボニル化合物の基礎（4）</td>
<td>有機金属反応剤とカルボン酸誘導体およびその他の化合物との反応、α,β-不飽和カルボニル化合物、保護基について学ぶ。</td>
</tr>
<tr>
<td>7</td>
<td>徳山・岡野</td>
<td>アルデヒド、ケトンの反応（1）</td>
<td>アルデヒド、ケトンの命名法、構造と物理的性質、合成について学ぶ。</td>
</tr>
<tr>
<td>8</td>
<td>徳山・岡野</td>
<td>アルデヒド、ケトンの反応（2）</td>
<td>アルデヒド、ケトンの一般的な反応、ヒドリドイオン、炭素求核剤、シアン化物イオンとの反応について学ぶ。</td>
</tr>
<tr>
<td>9</td>
<td>徳山・岡野</td>
<td>アルデヒド、ケトンの反応（3）</td>
<td>Wittig 反応によるカルボニル化合物のアルケンへの変換とその応用、炭素求核剤との反応によるイミン、アミノ化合物の合成について解説する。</td>
</tr>
<tr>
<td>10</td>
<td>徳山・岡野</td>
<td>アルデヒド、ケトンの反応（4）</td>
<td>酸素求核剤との反応によるアセタールの形成と保護基としての利用、環状ヘミアセタールの生成と糖の化学の初歩について理解する。</td>
</tr>
</tbody>
</table>
11 徳山・岡野 カルボン酸誘導体の反応(1)
エステル、アミド、カルボン酸無水物等のカルボン酸誘導体の命名法、構造と物理的性質について学ぶ。

12 徳山・岡野 カルボン酸誘導体の反応(2)
カルボン酸誘導体のアシル基での反応に関して概説し、カルボン酸無水物、無水物の反応について学ぶ。

13 徳山・岡野 カルボン酸誘導体の反応(3)
カルボン酸の対応するエステル、アミド、無水物への変換反応について学ぶ。また、エステルの反応について解説し、天然のエステルである脂質の加水分解について学ぶ。

14 徳山・岡野 カルボン酸誘導体の反応(4)
アミドの反応とそれを応用したβ-ラクタム系抗生物質の作用機序について学ぶ。さらに、アミド結合またはエステル結合を有する天然繊維と合成繊維について学ぶ。

15 徳山・岡野 カルボン酸誘導体の反応(5)
また、生体内でのアシル化反応の例を学ぶ。また、アシル化物と同じ酸化段階を有するニトリルの基本的な反応について解説する。

[成績評価方法]
出席状況と定期試験により評価する。

[教科書]
「スミス基礎有機化学（上・下） 第3版」 J. G. Smith 著，山本尚・大島幸一郎 監訳 化学同人 (2012)
授業科目名：有機化学 5
配当学年（セメスター）：2年（4）
単位数：2
担当教員：山口 雅彦、有澤 美枝子

【目的と概要】
有機化学 5 ではカルボニル基の化学およびアミン、ヘテロ環化合物、およびペリ環状反応を学習する。

【学習の到達目標】
カルボニル化合物、アミンの基本的性質、反応性、および合成方法、さらにヘテロ環化合物とペリ環状反応を理解し、基礎的な反応の機構を説明できるようになる。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項 目</th>
<th>授 業 内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>山口・有澤</td>
<td>エノール・エノラートの化学、基礎</td>
<td>カルボニル化合物の α 位水素の酸性度、エノールとエノラートの生成法や、ハロゲン化、アルキル化などの基本的な反応様式について理解する。</td>
</tr>
<tr>
<td>2</td>
<td>山口・有澤</td>
<td>エノール・エノラートの化学(1)</td>
<td>LDA を用いるエノラート生成とカルボニル α-位のアルキル化などについて解説する。</td>
</tr>
<tr>
<td>3</td>
<td>山口・有澤</td>
<td>エノール・エノラートの化学(2)</td>
<td>エノラートを用いる反応の応用例として、β-ケートエステルのアルキル化反応、加水分解・脱二酸化炭素反応、アセト酢酸エステル合成法、マロン酸エステル合成法について解説する。</td>
</tr>
<tr>
<td>4</td>
<td>山口・有澤</td>
<td>カルボニル縮合反応(1)</td>
<td>カルボニル化合物を用いる炭素＝炭素結合反応の代表例である aldol 反応に関して、反応条件および反応機構などを学ぶ</td>
</tr>
<tr>
<td>5</td>
<td>山口・有澤</td>
<td>カルボニル縮合反応(2)</td>
<td>Claisen 縮合反応と反応機転、交差 Claisen 縮合反応、分子内 Claisen 縮合（Dieckmann 縮合反応など）について学ぶ。</td>
</tr>
<tr>
<td>6</td>
<td>山口・有澤</td>
<td>アミン(1)</td>
<td>アミンの合成について理解する。</td>
</tr>
<tr>
<td>7</td>
<td>山口・有澤</td>
<td>アミン(2)</td>
<td>アミンの反応について理解する。</td>
</tr>
<tr>
<td>8</td>
<td>山口・有澤</td>
<td>炭素炭素結合生成反応(1)</td>
<td>有機合成における炭素炭素結合生成反応として、種々のカップリング反応について解説する。触媒作用について理解する。</td>
</tr>
<tr>
<td>9</td>
<td>山口・有澤</td>
<td>炭素炭素結合生成反応(2)</td>
<td>シクロプロパン合成やメタセシス反応について学ぶ。</td>
</tr>
<tr>
<td>10</td>
<td>山口・有澤</td>
<td>ヘテロ環化合物(1)</td>
<td>ヘテロ 5 員環化合物について理解する。</td>
</tr>
<tr>
<td>11</td>
<td>山口・有澤</td>
<td>ヘテロ環化合物(2)</td>
<td>ヘテロ 6 員環化合物について理解する。</td>
</tr>
</tbody>
</table>
12 山口・有澤 ベリ環状反応(1) 分子軌道と軌道対称性について理解する。
13 山口・有澤 ベリ環状反応(2) 電子環状反応について理解する。
14 山口・有澤 ベリ環状反応(3) 環状付加反応について理解する。
15 山口・有澤 アミノ酸とタンパク質 アミノ酸やペプチドについて解説し、ペプチドの合成について学ぶ。

[成績評価方法]
出席状況と定期試験により評価する。

[教科書]
「スミス 基礎有機化学（上・下）第3版」 J.G. Smith 著、山本尚・大場幸一郎 監訳 化学同人 (2012)

[参考書]
「芳香族ヘテロ環化合物の化学」坂本尚夫、廣谷 功 著、講談社サイエンティフィク (2008)
「ベリ環状反応」I. Fleming 著、鈴木啓介、千田憲孝 訳、化学同人 (2002)
Jerry March, John Wiley, 1992
生薬学 II
配当学年（セメスター） 2年（4）
単位数 2
担当教員 山田 徹

【目的と概要】
天然薬物は、治療薬の開発などの薬学研究の飛躍的な進歩に貢献してきた。生薬学は天然薬物を治療
に用いる場合の科学的な根拠を与えるものである。局方および重要生薬について、基原植物、有効成分、
薬効、遺伝子発現への影響などの基本事項およびバイオテクノロジーの応用の重要性を理解し、さらに
漢方治療および生命科学領域への応用に必要な基礎的知識を学ぶ。

【学習の到達目標】
天然薬物の医療および創業における重要性を説明できるようになる。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>山田</td>
<td>総論-1：生薬学序論</td>
<td>伝統のある天然薬物は、今日に至っても漢薬・民間薬として汎用されている。また、現在臨床で使用されている薬物は生薬を起源とするもの、あるいは生薬成分をリード化合物として合成されたものが多い。生薬学の医療における重要性を学ぶ。</td>
</tr>
<tr>
<td>2</td>
<td>山田</td>
<td>総論-2：天然薬物（I）－漢方薬1－</td>
<td>漢方薬は生薬を何種類か組み合わせて用いる。漢方医学と西洋医学の理論の共通点および相違点について理解する。</td>
</tr>
<tr>
<td>3</td>
<td>山田</td>
<td>総論-3：天然薬物（II）－漢方薬2－</td>
<td>漢方薬を構成する生薬の有効成分および薬効について理解し、漢方薬の使用における理論を学ぶ。</td>
</tr>
<tr>
<td>4</td>
<td>山田</td>
<td>総論-4：天然薬物（III）－漢方薬3－</td>
<td>いくつかの漢方薬を例にとり、その有効性について理解するとともに、使用にあたっての注意事項などについて学ぶ。</td>
</tr>
<tr>
<td>5</td>
<td>山田</td>
<td>各論-1：生薬成分の確認試験</td>
<td>生薬に含まれる成分の簡易な定性反応を用いた生薬の鑑別およびその品質評価（確認試験）について理解し、その試験の重要性を理解する。</td>
</tr>
<tr>
<td>6</td>
<td>山田</td>
<td>各論-2：植物バイオテクノロジーの生薬成分の生産への応用</td>
<td>遺伝子工学的技術を含む植物バイオテクノロジーの臨床でよく用いられる生薬の有効成分生産への応用の具体例を紹介し、これらの技術が治療医学分野においても重要であること理解する。</td>
</tr>
<tr>
<td>7</td>
<td>山田</td>
<td>各論-3：天然薬物の作用と病態時の細胞情報伝達</td>
<td>疾患の治療薬として使用されている生薬およびその有効成分には受容体の遮断薬や促進薬、また細胞情報伝達のキーエンスの阻害剤が多いため。病態時の細胞情報伝達の概念と生薬およびその成分の薬効について学ぶ。</td>
</tr>
</tbody>
</table>

— 37 —
8 山國 各論-4：天然薬物の作用と病態時の遺伝子発現

医療に用いられている生薬やその成分がどのようなメカニズムで病態時の細胞や組織における遺伝子発現に影響を及ぼすのかを理解する。

9 山國 各論-5：天然薬物の薬効評価

医療よく用いられる漢方薬および生薬の有効性を科学的に立証することは、きわめて重要であり、具体的な薬効評価の方法を学ぶ。

10 山國 各論-6：炎症・アレルギーの治療に用いられる天然薬物

炎症・アレルギーの概要を理解し、その治療に用いる生薬と天然物質の有用性と創薬研究への応用について学ぶ。

11 山國 各論-7：中枢神経疾患の治療に用いられる天然薬物

中枢神経疾患の概要を理解し、その治療に用いる生薬と天然物質の有用性と創薬研究への応用について学ぶ。

12 山國 各論-8：末梢神経疾患の治療に用いられる天然薬物

末梢神経疾患の概要を理解し、その治療に用いる生薬と天然物質の有用性と創薬研究への応用について学ぶ。

13 山國 各論-9：循環器系に作用する天然薬物

循環器系に作用する生薬の有効成分の単離・精製の経緯、作用機構、臨床への応用を学ぶ。

14 山國 各論-10：消化器系に作用する天然薬物

消化薬、健胃薬、消化性潰瘍治療薬、瀉下・止瀉薬、対症制吐薬として使用される生薬と天然物質の重要性を学ぶ。

15 山國 各論-11：創薬のリード化合物としての天然物質

ウロバイン（強心配糖体）、モルヒネ（麻薬性鎮痛薬）、アスピリン（合成下熱性鎮痛薬）など医薬品の多くは、天然薬物そのものかその誘導体にヒントを得て見出したものである。新しい創薬への可能性を導く新しいリード化合物を天然界から発見し、新薬開発に役立てる研究の重要性を理解する。

[成績評価方法]
出席、授業の中間で行う中間試験と学期末の定期試験およびレポートで評価する。
【教科書】「ベーシック薬学教科書シリーズ7 生薬学・天然物化学」吉川雅之編、化学同人
【参考書】「薬用資源学」山崎真夫、齊藤和季 編、丸善
「生薬学」北川 阿 他編、廣川書店
授業科目名 分析化学Ⅱ
配当学年（セメスター） 2年（4）
単位数 2
担当教員 大江 知行、後藤 貴章

【目的と概要】
薬学における分析化学は、医薬の創製と薬効、体内動態解析などの創薬科学のみならず、生命科学の基礎学問である。本講では、医薬品の分析に不可欠な、分光分析法、各種クロマトグラフィー、質量分析法の基本的な知識とその利用を中心に理解することを目的とする。また、日本薬局方記載医薬品の確認試験、純度試験として用いられる有機物、無機イオンの定性分析法も理解する。

【学習の到達目標】
紫外可視吸光度測定法、蛍光光度法の原理を説明し、生体分子の解析への応用例について説明できる。各種クロマトグラフィーの種類、それぞれの特徴と分離機構、用いられる代表的な検出法を説明できるとともに、クロマトグラフィーを用いて代表的な化学物質を分離・分析できる。また、日本薬局方記載医薬品の確認試験、純度試験として用いられる各種有機物、無機物の定性分析方法、定量分析方法を理解し、その内容を説明できる。さらに、質量分析法の概念、イオン化、ピークの種類、スペクトルの特徴を説明でき、スペクトルを解析できる。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項 目</th>
<th>授 業 内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大江</td>
<td>定性薬品分析概論</td>
<td>医薬品の定性分析について全体像を理解する。</td>
</tr>
<tr>
<td>2</td>
<td>後藤</td>
<td>紫外可視吸光度測定法</td>
<td>分光分析法の原理を理解し、紫外可視吸光度測定法の装置、Lambert-Beer の法則、生体分子の解析への応用例について理解する。</td>
</tr>
<tr>
<td>3</td>
<td>後藤</td>
<td>蛍光光度法</td>
<td>蛍光光度法の原理を説明し、生体分子の解析への応用例について理解する。また、化学発光についても理解する。</td>
</tr>
<tr>
<td>4</td>
<td>大江</td>
<td>クロマトグラフィーの基礎Ⅰ</td>
<td>クロマトグラフィーに関するビデオを観聴した後、クロマトグラフィーにおける、移動相と固定相の役割、分離原理のうち、吸着作用及び分配作用を利用する方法について理解する。</td>
</tr>
<tr>
<td>5</td>
<td>大江</td>
<td>クロマトグラフィーの基礎Ⅱ</td>
<td>クロマトグラフィーにおける分離原理のうち、イオン交換作用、分子ふるい作用及び生物学的親和性を利用して方法について理解する。</td>
</tr>
<tr>
<td>6</td>
<td>大江</td>
<td>クロマトグラフィーの基礎Ⅲ</td>
<td>クロマトグラムの解析法を修得し、本法による化合物の定性について理解する。</td>
</tr>
<tr>
<td>7</td>
<td>大江</td>
<td>クロマトグラフィーの基礎Ⅳ</td>
<td>クロマトグラフィーによる化合物の定量について、絶対検量線法、内標準法を含めて理解する。</td>
</tr>
</tbody>
</table>

— 39 —
<table>
<thead>
<tr>
<th>番号</th>
<th>氏名</th>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>大江</td>
<td>クロマトグラフィーの基礎Ⅴ</td>
<td>クロマトグラフィーにおける誘導体化法の概念と誘導体化剤のデザインについて考え、高感度化との関連について理解する。</td>
</tr>
<tr>
<td>9</td>
<td>大江</td>
<td>有機物確認試験Ⅰ</td>
<td>アルコール性水酸基、フェノール、アルデヒドおよびケトンの特異的な検出法（定性反応）と誘導体化による高感度定量法を理解する。</td>
</tr>
<tr>
<td>10</td>
<td>大江</td>
<td>有機物確認試験Ⅱ</td>
<td>カルボン酸、アミン、チオール類などの特異的な検出法（定性反応）と誘導体化による高感度定量法を理解する。</td>
</tr>
<tr>
<td>11</td>
<td>大江</td>
<td>有機物確認試験Ⅲ</td>
<td>ステロイド、糖などの構造特異的な検出法（定性反応）と誘導体化による高感度定量法を理解する。</td>
</tr>
<tr>
<td>12</td>
<td>大江</td>
<td>無機イオンの定性試験</td>
<td>無機イオンの系統分離および日本薬局方記載薬品の無機性不純物の純度（限度）試験法を理解する。</td>
</tr>
<tr>
<td>13</td>
<td>大江</td>
<td>質量分析法Ⅰ</td>
<td>質量分析法のビデオを視聴し、その全体像を理解する。質量分析法で用いる「質量」、「分子量」の意味を理解する。</td>
</tr>
<tr>
<td>14</td>
<td>大江</td>
<td>質量分析法Ⅱ</td>
<td>質量分析装置を概観し、各種イオニ化法のメカニズムと特徴を理解する。</td>
</tr>
<tr>
<td>15</td>
<td>大江</td>
<td>質量分析法Ⅲ</td>
<td>磁場や電場中の荷電粒子の運動特性と、磁場型質量分析計の特徴を理解する。</td>
</tr>
</tbody>
</table>

【成績評価方法】
主に筆記試験を基礎に評価する。

【教科書】
「パートナー分析化学Ⅰ 改訂第2版」萩中 淳・山口政俊・千熊正彦編、南江堂 (2012)
「パートナー分析化学Ⅱ 改訂第2版」山口政俊・辻島 努・陳田 勲編、南江堂 (2012)

【参考書】
「機器による医薬品分析」山川浩司、鈴木真言編、講談社サイエンティフィック (1994)

【読む物】
「分離の科学 ハイテクを支えるセパレーション・サイエンス」 上野景平著、講談社ブルーバックス (1988)
「物質の質量から何がわかるか」田島 進、飛田成史共著、裳華房 (1991)
「ノーベル賞の質量分析法で病気を診る」清水 章著、岩波化学ライブラリー94 (2003)
授業科目名 放射化学 配当学年（セメスター） 2年（4）
単位数 2
担当教員 岩田 錦、吉田 浩子
船木 善仁

【目的と概要】
ラジオアイソトープは生命科学研究や医学診断においては必須のツールである。本講義において、放射線とラジオアイソトープに関連した基礎知識を正確に理解し、その取扱に関する技術をしっかり身につける。また、核医学診断に使用する放射性医薬品の特性、製造法、管理法、利用法について学習する。

【学習の到達目標】
放射能の本質を理解し、生命科学の研究における有用なラジオアイソトープの利用に関して知識を深めることで放射性トレーサーを研究に利用できるようになる。また、放射性医薬品の臨床応用の実態を習得する。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>岩田</td>
<td>放射能発見の歴史、原子核と放射能(I)</td>
<td>放射能発見の歴史を概観してラジオアイソトープの有用性を理解し、学習の意義を知る。その第一歩として放射能の概念を学ぶ。</td>
</tr>
<tr>
<td>2</td>
<td>岩田</td>
<td>原子核と放射能(II)</td>
<td>原子核の構造、放射線の種類と特性、原子核変、半減期などを放射化学の基礎的な知識を学ぶ。</td>
</tr>
<tr>
<td>3</td>
<td>岩田</td>
<td>放射線と物質との相互作用(I)</td>
<td>放射線が物質に及ぼす影響に関して、放射線の種類とエネルギーとの関係を学習する。</td>
</tr>
<tr>
<td>4</td>
<td>岩田</td>
<td>放射線と物質との相互作用(II)</td>
<td>放射線が物質に及ぼす影響に関して、その物理的な変化と放射線のエネルギーの吸収の過程を学習する。</td>
</tr>
<tr>
<td>5</td>
<td>岩田</td>
<td>放射線測定法(I)</td>
<td>放射線の相互作用を応用していかに放射線を測定するかを各種放射線測定器の原理と核種に応じた測定法およびその同定法を学ぶ。</td>
</tr>
<tr>
<td>6</td>
<td>吉田</td>
<td>放射線測定法(II)</td>
<td>放射線の測定法の中でライフサイエンス研究に必須な液体シンチレーションカウンターとイメージングプレートの利用法について学習する。</td>
</tr>
<tr>
<td>7</td>
<td>岩田</td>
<td>放射性核種の製造と標識化合物</td>
<td>原子炉や加速器の原理を理解し、これらを利用したラジオアイソトープの製造法、またトレーサーとして利用される標識化合物の合成法の原理と特徴、高い放射能をもつ標識化合物の合成法の基礎を学ぶ。</td>
</tr>
</tbody>
</table>
放射性物質の薬学領域への応用 (I)
放射性トレーサーを利用した分析法として、同位体希釈法とラジオアッセイの原理および生命科学領域での実際例について学習する。

放射性物質の薬学領域への応用 (II)
その他の応用例としてオートラジオグラフィなどを学ぶ

放射性医薬品 (I)
放射性医薬品を用いる画像診断法について、その特性と測定原理、測定装置について学習する。

放射性医薬品 (II)
放射性医薬品に用いられるラジオアイソトープの特徴を知り、99mTc、123I および PET 用ラジオアイソトープの標識合成法について学ぶ。

放射性医薬品 (III)
放射性医薬品の人体各臓器とその機能に対する診断原理について学習する。また、治療用の放射性医薬品についても学ぶ。

放射線の生体への影響
放射線の種類によって生じる生物学的影響の把握、人体における急性障害、慢性障害について学習するとともに、内部被曝、外部被曝によって起こる臨床的影響について放射線量と相関させて理解する。

放射線の防護と管理
トレーサー実験の際の非密封放射性同位元素の安全取扱法の原則と実際、および、放射線障害防止法に基づく安全管理法を学習し、放射線障害の防護に使われる薬品について理解する。

【成績評価方法】
授業への出席率と筆記試験の成績により評価する。

【教科書】「新放射化学・放射性医薬品学 改訂第3版」佐治英郎、前田 穂、小島周二、南江堂

--- 42 ---
【目的と概要】
分子構造解析のための主要な手法である分子振動（赤外吸収、ラマン散乱）、電子遷移（吸収、蛍光、円二色性）、核磁気共鳴、電子スピン共鳴の各種分光法と X 線回折法について、それらの原理と応用を学び、タンパク質等の巨大分子を含む種々の分子の構造を解析する方法について理解を深める。本科目の履修には１年次に開講される「物理化学１」及び全学教育科目「化学Ａ」を履修していることが必要である。

【学習の到達目標】
・分子構造解析のための種々の分光法や回折法の原理を理解し、説明できる。
・各種解析法の特徴を述べ、分子構造に関してどのような情報が得られるかを説明できる。
・各種解析法をタンパク質や核酸の構造解析に応用する方法を具体的に説明できる。
・タンパク質や核酸の立体構造に関する基本的な事項を説明できる。

【授業内容】
<table>
<thead>
<tr>
<th>回</th>
<th>委任者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>三浦・平松</td>
<td>分子の電気的性質 1. 電気双極子モーメントと分極率</td>
<td>分子の電気的性質の一つである電気双極子モーメント（永久および誘起）と分極率について、それらの定義と物理的意味を理解する。また、これらの物理量を実験的に求めると方法についても学ぶ。</td>
</tr>
<tr>
<td>2</td>
<td>三浦・平松</td>
<td>分子の電気的性質 2. 分子構造および光学的性質との関連</td>
<td>分子の電気双極子モーメント・分極率と分子構造との関連および分子集合体としての性質である誘電率や屈折率との関連を理解する。</td>
</tr>
<tr>
<td>3</td>
<td>三浦・平松</td>
<td>振動スペクトル 1. 分子振動</td>
<td>調和振動子と二原子分子を用いて、分子振動のエネルギー準位と波動関数に関する基本的な概念を学び、また、多原子分子の振動（基準振動の数と振動形）についても理解する。</td>
</tr>
<tr>
<td>4</td>
<td>三浦・平松</td>
<td>振動スペクトル 2. 赤外吸収とラマン散乱</td>
<td>分子振動を調べるための代表的な手法である赤外吸収の原理と赤外スペクトルの測定法、ラマン散乱の原理とラマンスペクトルの測定法を理解する。</td>
</tr>
<tr>
<td>5</td>
<td>三浦・平松</td>
<td>振動スペクトル 3. 分子構造と振動スペクトル</td>
<td>分子の対称性と分子振動、特性振動を用いた官能基の同定、水素結合による振動数の変化など、振動スペクトルを用いて分子構造解析を行う上で必要な基礎知識を習得する。</td>
</tr>
<tr>
<td>6</td>
<td>三浦・平松</td>
<td>振動スペクトル 4. 振動スペクトルの応用</td>
<td>タンパク質の立体構造に関する基礎知識を深め、2次構造やアミノ酸側鎖の構造を振動スペクトルを用いて調べる方法を習得する。</td>
</tr>
</tbody>
</table>
7 三浦・平松 X線回折
1. 回折法の原理
電子による X線の散乱、散乱X線の干渉、結晶によるX線のブラッキング反射など、回折法による結晶構造解析の原理を理解する。

8 三浦・平松 X線回折
2. 結晶構造解析
分子の磁気的性質
結晶内の原子配列の対称性とX線回折の消減則との関連を理解し、粉末X線回折写真から相対位置を求める方法、および単結晶X線回折からタンパク質などの分子構造を決定する方法を学ぶ。

9 三浦・平松 紫外・可視吸収
紫外・可視吸収スペクトルの測定原理に関する理解を深める。
また、タンパク質や核酸の電子状態と紫外吸収との関連を理解し、構造解析への応用法を習得する。

10 三浦・平松 円偏光二色性スペクトルと蛍光スペクトル
円偏光二色性と蛍光スペクトルの測定原理と各種応用に関する理解を深め、タンパク質や核酸の構造を円偏光二色性や蛍光スペクトルを用いて調べる方法を習得する。

11 三浦・平松 分子の磁気的性質
電子の軌道角運動量、スピン運動、および核のスピン運動に起因する磁気双極子モーメントについて学び、角運動量と磁気双極子モーメントの関連を理解する。

12 三浦・平松 核磁気共鳴
1. ハモア周波数と化学シフト
核磁気共鳴のエネルギー準位と共鳴周波数（ハモア周波数）および共鳴周波数の環境による変化（化学シフト）について学び、化学シフトと分子構造の関連を理解する。

13 三浦・平松 核磁気共鳴
2. スピン-スピン結合
核スピン間の相互作用（スピン-スピン結合）の起源とそれによるシグナル分裂のメカニズムについて学び、核磁気共鳴法による分子構造解析について理解を深める。

14 三浦・平松 核磁気共鳴
3. 核オーバーハウザー効果
核オーバーハウザー効果の原理を学び、タンパク質や核酸の構造解析に核オーバーハウザー効果を利用する方法について理解を深める。

15 三浦・平松 電子スピン共鳴
磁場中に置かれた電子スピンのエネルギー準位と共鳴周波数、および核スピンとの相互作用による分裂（超微細構造）について理解し、スピンラベルを用いた構造解析について学ぶ。

【成績評価方法】
授業への出席（小テスト等、20%）と定期試験の成績（80%）で評価する。

【参考書】
「アトキンス物理化学第8版（上）、（下）」P. W. Atkins著、千原・中村訳、東京化学同人（2009）
「物理化学（上）、（下）」桐野 豊 編、共立出版（1999）
「最新機器分析学」中澤裕之 譯修、南山堂（2000）
[目的と概要]
生化学４では、高等動物細胞における糖質、脂質、アミノ酸などの生体成分が細胞内のどのような小器官でどのようにして生成され、またどのようにして代謝されるのかを学ぶ。また、これらの物質の代謝が互いどのようにかかわっているのか、さらにこれらの物質の生体における役割について学ぶ。また、遺伝学の基礎、生物科学におけるモデル生物の有用性、バイオインフォマティクスについて具体的な例を学ぶ。

[学習の到達目標]
高等動物における中間代謝の仕組みについて理解し、物質代謝によるエネルギー獲得の機序について説明できるようになる。また、この代謝の異常と病気との関連性についても理解する。

[授業内容]

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項 目</th>
<th>授 業 内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>青木</td>
<td>脂質と膜 (I)</td>
<td>さまざまな脂質分子の構造を学ぶ</td>
</tr>
<tr>
<td>2</td>
<td>青木</td>
<td>脂質と膜 (II)</td>
<td>生体膜の構造と特徴を理解する</td>
</tr>
<tr>
<td>3</td>
<td>青木</td>
<td>脂質と膜 (III)</td>
<td>膜タンパク質の構造と合成を理解する</td>
</tr>
<tr>
<td>4</td>
<td>青木</td>
<td>代謝とは</td>
<td>エネルギー代謝の概要、異化・同化を理解する 代謝マップの概要を理解する</td>
</tr>
<tr>
<td>5</td>
<td>巻出</td>
<td>解糖</td>
<td>嫌気的代謝系および好気的代謝系のどがい、酵素系に関与する酵素、ATP産生、および乳酸産生との関連について理解する クエン酸サイクルのATP産生における役割、クエン酸サイクル構成成分のアミノ酸等への変換、およびオキシド還元系のためのアデノリブロビック反応について理解する</td>
</tr>
<tr>
<td>6</td>
<td>巻出</td>
<td>電子伝達系と酸化的リン酸化</td>
<td>電子伝達系、酸化的リン酸化およびATP産生機序について理解する グリコーゲンの構造とその合成、分解に関与する酵素の活性調節機序についてcAMPとの関連において解説する。また糖質代謝の別経路についても理解する。また、ペントースリン酸経路とその重要性について学ぶ</td>
</tr>
<tr>
<td>7</td>
<td>青木</td>
<td>脂質代謝 (I)</td>
<td>脂肪酸の合成と分解（β酸化）について理解する</td>
</tr>
<tr>
<td>8</td>
<td>青木</td>
<td>脂質代謝 (II)</td>
<td>コレステロール、リン脂質、トリアミングリセロールの合成・分解について理解する</td>
</tr>
<tr>
<td>項目</td>
<td>内容</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>青木</td>
<td>アミノ酸代謝</td>
<td>アミノ酸の代謝、糖原性アミノ酸、ケト原性アミノ酸、および両性代謝中間体を形成するアミノ酸について学ぶ。また、体内におけるアンモニア生成と尿素サイクルについて学ぶ</td>
</tr>
<tr>
<td>10</td>
<td>青木</td>
<td>食物の消化・異化</td>
<td>食物がどのように消化されるかについて学ぶ</td>
</tr>
<tr>
<td>11</td>
<td>青木</td>
<td>簡単な遺伝学</td>
<td>遺伝学の基礎を学ぶ</td>
</tr>
<tr>
<td>12</td>
<td>青木</td>
<td>遺伝学的研究手法</td>
<td>モデル生物における変異体について理解する。遺伝病、ノックアウトマウスについて学ぶ</td>
</tr>
<tr>
<td>13</td>
<td>青木</td>
<td>バイオインフォマティクス</td>
<td>バイオインフォマティクスの概念を理解するとともに、データベースから遺伝子情報を得る手法について学ぶ</td>
</tr>
<tr>
<td>14</td>
<td>青木</td>
<td>生理活性脂質</td>
<td>シグナリング分子としての脂質について学ぶ</td>
</tr>
<tr>
<td>15</td>
<td>青木・巻出</td>
<td>試験</td>
<td>授業部分についての理解度を確認する</td>
</tr>
</tbody>
</table>

【成績評価方法】
主に出席状況と筆記試験を基礎に評価する。

【教科書】
Essential 細胞生物学 中村桂子・松原謙一 監訳（南江堂）
ベーシック薬学教科書シリーズ「生化学」 中西義信 編（化学同人）

【参考書】
MOLECULAR BIOLOGY OF THE CELL 第5版
Alexander Johnson, Julian Lewis他 Bruce Alberts

— 46 —
授業科目名
分子生物学
配当学年（セメスター） 2年（4）
単位数 2
担当教員 稲田 利文

「目的と概要」
様々な段階での遺伝子の発現制御機構を知る。さらに、分子生物学を基礎として生まれた遺伝子工学の基礎知識を習得し、その応用としての遺伝子治療、遺伝子導入動物作製、ゲノム創薬などの基本原理を理解することを目的とする。

「学習の達成目標」
真核細胞のDNAの複製・修復と転写の分子機構を理解する。
真核細胞の遺伝子発現機構について理解する。
低分子RNAによる遺伝子発現制御機構について理解する。
病気と遺伝子の関係について理解する。
ゲノム創薬の基本原理を理解する。

「授業の内容」

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>稲田</td>
<td>タンパク質の構造・機能 タンパク質（アミノ酸）の構造・機能について理解する。</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>稲田</td>
<td>DNAと細胞の複製</td>
<td>DNAと細胞の複製機構について理解する。</td>
</tr>
<tr>
<td>3</td>
<td>稲田</td>
<td>DNA損傷と修復機構</td>
<td>DNAの損傷と修復機構、関連する疾患について理解する。</td>
</tr>
<tr>
<td>4</td>
<td>稲田</td>
<td>染色体の構造と分布</td>
<td>染色体の構造と分配機構について理解する。</td>
</tr>
<tr>
<td>5</td>
<td>稲田</td>
<td>遺伝の基礎</td>
<td>遺伝の基礎（メンデルの法則）について理解する。</td>
</tr>
<tr>
<td>6</td>
<td>稲田</td>
<td>転写反応</td>
<td>RNAポリメラーゼによる転写反応の分子機構について理解する。</td>
</tr>
<tr>
<td>7</td>
<td>稲田</td>
<td>転写制御</td>
<td>転写の制御機構について理解する。</td>
</tr>
<tr>
<td>8</td>
<td>稲田</td>
<td>RNAプロセシング</td>
<td>RNAプロセシングの分子機構について理解する。</td>
</tr>
<tr>
<td>9</td>
<td>稲田</td>
<td>翻訳開始と伸長</td>
<td>リボソームによる翻訳開始・伸長反応の分子機構について理解する。</td>
</tr>
<tr>
<td>10</td>
<td>稲田</td>
<td>局在化と分解</td>
<td>タンパク質とmRNAの局在化・分解について理解する。</td>
</tr>
<tr>
<td></td>
<td>稲田</td>
<td>低分子RNAの機能</td>
<td>低分子RNAによる様々な遺伝子発現制御機構について理解する。</td>
</tr>
<tr>
<td>11</td>
<td>稲田</td>
<td>ストレス応答</td>
<td>様々なストレスに応答した遺伝子発現制御機構について理解する。</td>
</tr>
</tbody>
</table>
12 稲田 遺伝子発現の品質管理 不良品を認識し除去することで遺伝子発現の正確性を保証する品質管理機構について理解する。またその知見に基づいた治療法について理解する。

13 稲田 ゲノム創薬と核酸医薬の現状 ゲノム創薬の理念を理解する。アンチセンス RNA、RNA アプタマーなどの核酸医薬による治療法の原理と現状について理解する。

14 稲田 遺伝子工学の応用 DNA 塩基配列決定法、PCR 法、サザン・ノザンプロティング法などの遺伝子解析法の基本を理解する。多数の遺伝子を網羅的に解析する手法等の基本原理を理解する。

「成績評価方法」
1) 出席点（1点/1回の講義、約 15%）。
2) 講義後の定期試験における筆記試験の成績（約 85%）。
以上成績から総合評価する。

「教科書」
正：Essential 細胞生物学（南江堂）第 3 版
副：ワトソン 遺伝子の分子生物学 第 6 版 中村桂子監訳、東京電機大学出版局
授業科目名：薬理学 3
配当学年（セメスター）：2年（4）
単位数：2
担当教員：福永 浩司、森口 茂樹

【目的と概要】
本講義では、薬理学1、2と同様に、薬物療法を考える上で不可欠な薬理作用と生体機能の関連を理解することを目的とする。循環器系、腎臓・泌尿器系、代謝系および悪性腫瘍に作用する薬物およびそれらの臨床応用をとりあげる。

【学習の到達目標】
薬物療法の基礎となる知識およびその考え方について理解し、さらに薬物が生体機能に及ぼす影響を理解する。それらをもとに、薬物による疾病の治療効果が現れる仕組みを理解する。副作用や遺伝的的な疾患、臨床における薬物療法の問題点などの理解を通して、薬物作用機構を考えることができる。

【授業内容】
<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項 目</th>
<th>授 業 内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>福永</td>
<td>循環器作用薬総論</td>
<td>心臓・血管・腎臓の機能を学び、それらに影響を与える薬物の作用機序を理解する。循環器疾患の病態生理の概略を学び、主な治療薬の薬理作用と病態の改善効果との関係を理解する。</td>
</tr>
<tr>
<td>2</td>
<td>福永</td>
<td>循環器作用薬（1）</td>
<td>心不全治療薬：心臓の機能的活動とその異常を学び、強心配糖体、アドレナリンβ受容体刺激薬およびcAMP関連薬物、ならびに、ACE阻害薬と利尿薬による治療効果を理解する。</td>
</tr>
<tr>
<td>3</td>
<td>福永</td>
<td>循環器作用薬（2）</td>
<td>狭心症治療薬：心臓の酸素需給バランス調節とその異常を学び、硝酸薬、カルシウムチャネル阻害薬その他の冠血管拡張薬、およびアドレナリンβ受容体遮断薬による治療効果を理解する。</td>
</tr>
<tr>
<td>4</td>
<td>福永</td>
<td>循環器作用薬（3）</td>
<td>抗不整脈薬：心臓の電気的活動とその異常を学び、ナトリウムチャネル阻害薬をはじめ各種抗不整脈薬の分類と作用機序および治療効果を理解する。</td>
</tr>
<tr>
<td>5</td>
<td>福永</td>
<td>循環器作用薬（4）</td>
<td>高血圧症治療薬：血圧の調節機序および高血圧症との関係を学び、交感神経系・レニン・アンジオテンシン系抑制薬、カルシウムチャネル阻害薬、および利尿薬による治療効果を理解する。</td>
</tr>
<tr>
<td>6</td>
<td>福永</td>
<td>腎臓作用薬</td>
<td>腎臓の尿生成調節に対する薬物の影響に基づき、高血圧・うつ血性心不全に対する利尿薬の改善効果を理解する。</td>
</tr>
<tr>
<td>7</td>
<td>福永</td>
<td>泌尿器作用薬</td>
<td>神経による排尿の調節機構を学び、排尿障害・前立腺肥大症治療薬を理解する。</td>
</tr>
<tr>
<td>8</td>
<td>福永</td>
<td>生殖器作用薬</td>
<td>子宮収縮薬・子宮弛緩薬・生活改善薬について理解する。</td>
</tr>
</tbody>
</table>
| | 森 里 | 代謝性疾患治療薬
(1) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>森 里</td>
<td>脂質代謝およびブリン代謝機構を学び、高脂血症・高尿酸血症・痛風治療薬について理解する。</td>
</tr>
</tbody>
</table>
| | 森 里 | 代謝性疾患治療薬
(2) |
| 10 | 森 里 | 自己免疫疾患と骨代謝調節機構を学び、関節リウマチ・膠原病・骨粗鬆症治療薬について理解する。 |
| | 森 里 | 皮膚・眼科治療薬 |
| 11 | 森 里 | 皮膚および眼に適用する薬物の特徴を学び、皮膚・眼疾患治療薬について理解する。 |
| | 森 里 | 抗がん薬（1） |
| 12 | 森 里 | 抗がん薬を分類して、治療対象にするがんの種類およびそれらの作用機序について理解する。 |
| | 森 里 | 抗がん薬（2） |
| 13 | 森 里 | 主な抗がん薬に対する耐性獲得機構および副作用・併用療法について理解する。 |
| | 福 永 | 臨床 |
| 14 | 福 永 | 代表的な薬剤について、その原因と社会的背景について学び、薬剤を防止する方法を理解する。 |
| | 福 永 | 医薬品の副作用・相 互作用 |
| 15 | 福 永 | 医療用医薬品と一般用医薬品を使用する場合に起こる重篤な副作用と注意すべき薬物相互作用について理解する。 |

【成績評価方法】
レポート、中間試験、定期試験および出席状況で評価する。

【教科書】「NEW薬理学」田中千賀子・加藤隆一 編集、南江堂

【参考書】「新薬理学テキスト」佐藤進 編集、講談社
「新薬理学入門」柳澤聡行 他編著、南山堂
「グッドマン・ギルマン薬理書」藤原元始 他監訳、講談社
授業科目名: 衛生化学
配当学年（セメスター）: 2年（4）
単位数: 2
担当教員: 松沢 厚

[目的と概要]
衛生化学は、人の健康の維持・増進と疾病予防のため、人にとって必要な栄養素の理解や、環境ストレス、化学物質、薬物など様々なストレスから人を守る方策を考える研究領域であり、重点的な研究テーマは時代のニーズに合わせて変化する。本講義では、特に栄養素の消化・吸収やエネルギー代謝、化学物質の体内動態、化学物質の毒性、化学物質の安全性評価と規制について理解を深める。

[学習の到達目標]
1. ストレスについて理解する。
2. 栄養素の消化・吸収やエネルギー代謝について理解する。
3. 化学物質の体内動態、毒性、安全性評価と規制について理解する。

[授業内容]
<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項 目</th>
<th>授 業 内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>松沢</td>
<td>衛生化学</td>
<td>衛生化学について概説する。</td>
</tr>
<tr>
<td>2</td>
<td>松沢</td>
<td>栄養素</td>
<td>三大栄養素について学び、それぞれの栄養素の消化・吸収の仕組みを理解する。</td>
</tr>
<tr>
<td>3</td>
<td>松沢</td>
<td>栄養素の体内運搬</td>
<td>栄養素はどのようにして体内で運搬されるのか、特に脂質の体内運搬について学ぶ。</td>
</tr>
<tr>
<td>4</td>
<td>松沢</td>
<td>栄養素の貯蔵</td>
<td>栄養素の貯蔵と利用、エネルギー代謝について理解する。</td>
</tr>
<tr>
<td>5</td>
<td>松沢</td>
<td>その他の栄養素</td>
<td>ビタミン、ミネラル、食物繊維など、三大栄養素以外の栄養素について学習する。</td>
</tr>
<tr>
<td>6</td>
<td>松沢</td>
<td>栄養と健康・疾病</td>
<td>栄養素の過不足と疾病との関わり、食物摂取基準や食生活・食習慣の変化について理解する。</td>
</tr>
<tr>
<td>7</td>
<td>松沢</td>
<td>栄養と健康・疾病</td>
<td>健康増進と食品成分の関わりを理解し、健康食品や栄養機能食品について学ぶ。</td>
</tr>
<tr>
<td>8</td>
<td>松沢</td>
<td>化学物質の体内動態</td>
<td>化学物質や薬物の吸収、分布、排泄などの体内動態について理解を深める。</td>
</tr>
<tr>
<td>9</td>
<td>松沢</td>
<td>化学物質の代謝</td>
<td>化学物質や薬物の代謝について理解する。</td>
</tr>
<tr>
<td>10</td>
<td>松沢</td>
<td>化学物質の毒性</td>
<td>化学物質や薬物の毒性によって誘導される、発がんのメカニズムについて理解する。</td>
</tr>
<tr>
<td>11</td>
<td>松沢</td>
<td>化学物質の毒性</td>
<td>化学物質や薬物の毒性によって誘導される、組織障害のメカニズムについて理解する。</td>
</tr>
<tr>
<td>12</td>
<td>松沢</td>
<td>化学物質の安全性評価と規制</td>
<td>化学物質の安全性評価、および規制基準と法律について学習する。</td>
</tr>
<tr>
<td>13</td>
<td>松沢</td>
<td>化学物質の安全性評価と規制</td>
<td>毒性試験法など様々な試験法について理解する。</td>
</tr>
<tr>
<td>14</td>
<td>松沢</td>
<td>ストレスと生体応答</td>
<td>ストレスの定義と、ストレスによって細胞内で誘導されるストレス応答シグナルについて理解する。</td>
</tr>
<tr>
<td>15</td>
<td>松沢</td>
<td>ストレスと疾患</td>
<td>ストレスによって引き起こされる多様な疾患について、その原因やメカニズムを概説する。</td>
</tr>
</tbody>
</table>

[成績評価方法]
講義への出席状況、筆記試験を基に総合的に評価する。

[その他]
講義内容のほとんどが薬剤師国家試験出題基準に含まれる。

[教科書] 「衛生薬学-健康と環境-」永沼 章、姫野誠一郎、平塚 明 編集、丸善
薬剤学2

[目的と概要]
薬物が治療効果を発揮するには標的組織に到達する必要がある。新薬の分子設計のみならず、臨床薬物療法における投与設計においても薬物の体内動態を理解し、適切な投与量と投与間隔を知ることは非常に重要である。薬剤学2では、薬剤学1で講義した基礎的知識を踏まえて、特に、ヒトにおける薬物の体内動態の変動因子を理解すると共に、投与設計理論を理解することを目的とする。

[学習の到達目標]
・ コンパートメント理論を理解し、説明できるようになる。
・ 薬物速度論を基礎とした体内動態を理解し、薬物相互作用等を説明できるようになる。
・ 投与設計の原理を理解し、投与設計の基礎を学えるようになる。
・ TDM及びモーメント解析について説明できるようになる。

[授業内容]

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>立川</td>
<td>コンパートメント理論の応用1</td>
<td>薬物の体内における動態を最も簡単に示す1→コンパートメントモデルの概念と基礎を理解し、最も単純な単回静脈投与の投与設計について理解する。</td>
</tr>
<tr>
<td>2</td>
<td>立川</td>
<td>コンパートメント理論の応用2</td>
<td>薬物の体内における動態を最も簡単に示す1→コンパートメントモデルを応用することによって、点滴投与および繰り返し投与をモデルとして構築し、投与設計の基礎について理解する。</td>
</tr>
<tr>
<td>3</td>
<td>立川</td>
<td>コンパートメント理論の演習</td>
<td>コンパートメント理論を実際の事例を元に演習を行い理解する。</td>
</tr>
<tr>
<td>4</td>
<td>寺崎</td>
<td>生理学的薬物速度論</td>
<td>ヒトでの体内動態をコンピュータで詳細に予測することは、薬効毒性の面からも非常に重要である。特に、この課題は新薬開発において安全性と有効性の評価に多大の威力を発揮する。そこで、各組織での分布過程を組み込んだモデルをもとに数値積分法を用いて、体内動態を予測する理論について理解する。</td>
</tr>
<tr>
<td>5</td>
<td>寺崎</td>
<td>クリアランス理論</td>
<td>薬物の消失過程を速度論的に理解するにはクリアランス理論が必須である。全身クリアランス、臓器クリアランス、固有クリアランスの定義と相互関係を理解する。</td>
</tr>
<tr>
<td>6</td>
<td>立川</td>
<td>臨床薬物速度論</td>
<td>臨床薬物療法において、臨床薬物投与設計理論がいかに重要であるか理解する。</td>
</tr>
<tr>
<td>7</td>
<td>立川</td>
<td>臨床薬物投与設計理論（1）</td>
<td>点滴投与の際にの負荷投与量、維持投与速度の設定方法について理解する。</td>
</tr>
<tr>
<td>8</td>
<td>立川</td>
<td>臨床薬物投与設計理論（2）</td>
<td>治療薬の薬物濃度を維持させる為に必要な投与設計法について、繰り返し投与理論を理解する。</td>
</tr>
</tbody>
</table>
9 寺崎 非線形速度論 薬物の消失、分布過程には、1次過程に従わない場合も多い。その原因として、蛋白結合、代謝、細胞膜輸送の飽和効果がある。非線形速度論について理解する。

10 寺崎 薬物相互作用の速度論と機構論（1） 臨床上、薬物は併用されることが多いが、併用薬物によって見かけ上薬効が変動することがしばしば見られる。そこで、薬物相互作用を速度論的に理解する。

11 寺崎 薬物相互作用の速度論と機構論（2） 薬物相互作用を速度論的に解析する手法とその機構を理解する。

12 寺崎 病態時の体内動態と個人差の変動要因 臨床上、薬物によって体内動態に大きな変動が生じることがある。体内動態の律速過程を変動させる要因は薬物によって異なるが、病態時の動態と個人差の原因について理解する。

13 寺崎 TDMと高分子薬 Therapeutic Drug Monitoring (TDM) が必要な薬物について理解する。また、近年注目されている高分子薬について理解する。

14 立川 ボビュレーション・ファーマコキネティックス ボビュレーション・ファーマコキネティックス理論について理解する。

15 立川 モーメント解析 モーメント解析法としてモーメント解析法は計算が容易で、モデル化の困難なDDS製剤からの放出、吸収の解析に有用であり、その解析理論を理解する。

【成績評価方法】
出席状況、授業への積極的な参加、レポート、筆記試験の成績により総合的に評価する。

【教科書】 エピソード薬物動態学—薬物動態学の解明、京都広川書店（2012）

【参考書】 「わかりやすい生物薬理学 第4版」辻 彩 編、廣川書店（2008）
「臨床薬物動態学 第4版」加藤隆一著、南江堂（2009）
授業科目名 － 医薬品化学 1 － 配当学年（セメスター） 3年（5）
单位数 1
担当教員 岩漬 好治、叶 直樹

【目的と概要】
標的とする有機分子の合成経路をデザインするには、結合の切断を適切に行って、一段階前の合成中間体を考察する思考操作を、出発原料に到るまでくり返す必要がある。理論的に正しい切断を行うには、反応機構の正しい理解が大切であり、医薬品化学 1 では逆合成解析の基礎を学習する。

【学習の到達目標】
標的分子を合成するための合理的な逆合成解析が出来るようになり、素反応を組み合わせた実験的な合成を通して、有機化学の本当の面白さを味わうことができる。

【授業内容】
<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>岩漬・叶</td>
<td>合成デザインとしての逆合成解析の基礎</td>
<td>逆合成解析を行うための基本的な概念、適切な結合の切断、官能基変換 (FGI)、合成等価体、シントン、標的分子などについて医薬の合成例にして解説する。</td>
</tr>
<tr>
<td>2</td>
<td>岩漬・叶</td>
<td>二官能基結合切断</td>
<td>医薬に多く含まれるヘテロ原子の隣での切断の有用性を、いくつかの例で示して解説する。</td>
</tr>
<tr>
<td>3</td>
<td>岩漬・叶</td>
<td>C-C 結合切断</td>
<td>アルキン部分での切断の有用性、カルボニル基の反応性を用いた合成設計について理解する。</td>
</tr>
<tr>
<td>4</td>
<td>岩漬・叶</td>
<td>アルコールの切断</td>
<td>アルコール部位での切断によるカルボニル化合物への逆合成の考え方、また、ケトンをアルコールへと官能基変換した後に切断する手法について具体例を挙げて説明する。</td>
</tr>
<tr>
<td>5</td>
<td>岩漬・叶</td>
<td>1,3-ジカルボニル化合物の切断</td>
<td>Retro-aldol 型反応を用いた β-ヒドロキシカルボニル化合物の切断、α, β-不飽和カルボニル化合物の切断、retro-Claisen 型反応を用いた 1,3-ジカルボニル化合物の切断、エノラートの活性化に必要な官能基の除去について解説する。</td>
</tr>
<tr>
<td>6</td>
<td>岩漬・叶</td>
<td>1,5-ジカルボニル化合物の切断</td>
<td>Retro-Michael 型反応を用いた 1,5-ジカルボニル化合物の切断、Robinson annulation、Mannich 反応を利用した合成への展開について、生理活性天然物合成を例にして解説する。</td>
</tr>
<tr>
<td>7</td>
<td>岩漬・叶</td>
<td>極性転換</td>
<td>非論理的切断を行うための極性転換 (Impolung) の考え方について説明し、α-ヒドロキシカルボニル化合物の切断、シアノヒドリン合成、Strecker のアミノ酸合成、ベンゾイン縮合などの具体的について解説する。</td>
</tr>
</tbody>
</table>
[成績評価方法] 出席状況と筆記実験により評価する。

[参考書] 「有機合成戦略」Christine L. Willis, Martin Willis 著、富岡清訳、化学同人 (1998)
「ウォーレン有機化学（下）第2版」Clayden, Greeves, Warren, Wothers 著、野依ら訳、
東京化学同人 (2005)
演習問題を用いて自習することに適した参考書
「プログラム学習 有機合成化学」Stuart Warren 著、野村裕次郎/友田修司 訳、講談社サイエンティフィク (1979)
官能基の変換や保護を説明した参考書
「官能基の化学」James R. Hanson 著、豊田真弘訳、化学同人 (2003)
授業科目名 有機反応化学 配当学年（セメスター） 3年（5）
单位数 2
担当教員 山口 雅彦、根東 義則、
 田中 好幸、有澤 美枝子

【目的と概要】
生理活性を示す化合物には、窒素、酸素、イオウ、およびリン原子を構成原子として含む化合物が数
多く存在する。本講義では、これらの化合物の化学的性質や合成方法など、基本的性質を解説すると共
に、医薬品としての応用に関する基礎的知識を学ぶ。あわせて、これらを合成するのに必要な有機金属
化学について学ぶ。

【学習の到達目標】
窒素、酸素、イオウ、およびリン原子を構成原子として含む化合物の化学的性質と合成方法および有
機金属化学を理解し、説明できるようになる。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>山口・有澤</td>
<td>有機金属化学概論</td>
<td>有機金属化学の歴史について理解する。</td>
</tr>
<tr>
<td>2</td>
<td>山口・有澤</td>
<td>金属炭素結合1</td>
<td>18電子則、HSAB則を理解する。</td>
</tr>
<tr>
<td>3</td>
<td>山口・有澤</td>
<td>金属炭素結合2</td>
<td>典型金属炭素結合の性質を理解する。</td>
</tr>
<tr>
<td>4</td>
<td>山口・有澤</td>
<td>有機金属化合物の合成1</td>
<td>典型有機金属化合物の合成について理解する。</td>
</tr>
<tr>
<td>5</td>
<td>山口・有澤</td>
<td>有機金属化合物の合成2</td>
<td>遷移有機金属化合物の合成について理解する。</td>
</tr>
<tr>
<td>6</td>
<td>山口・有澤</td>
<td>有機金属化合物の反応1</td>
<td>典型有機金属化合物の反応について理解する。</td>
</tr>
<tr>
<td>7</td>
<td>山口・有澤</td>
<td>有機金属化合物の反応2</td>
<td>遷移有機金属化合物の反応について理解する。</td>
</tr>
<tr>
<td>8</td>
<td>根東・田中</td>
<td>ヘテロ元化学概論</td>
<td>非金属ヘテロ原子を含む化合物の特性を理解する。</td>
</tr>
<tr>
<td>9</td>
<td>根東・田中</td>
<td>有機イオウ化合物の性質</td>
<td>有機イオウ化合物の特性を理解する。</td>
</tr>
<tr>
<td>10</td>
<td>根東・田中</td>
<td>有機イオウ化合物の合成</td>
<td>有機イオウ化合物の合成法を理解する。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>11</td>
<td>根東・田中</td>
<td>有機イオウ化合物を用いる合成</td>
<td>有機イオウ化合物を用いる合成反応について理解する。</td>
</tr>
<tr>
<td>12</td>
<td>根東・田中</td>
<td>有機イオウ化合物を用いる不斉合成</td>
<td>キラルな有機イオウ試薬を用いる不斉合成を理解する。</td>
</tr>
<tr>
<td>13</td>
<td>根東・田中</td>
<td>反応機構解析と活性種</td>
<td>反応機構解析における反応活性種の役割を理解する。</td>
</tr>
<tr>
<td>14</td>
<td>根東・田中</td>
<td>反応機構解析と化学平衡</td>
<td>反応機構解析における化学平衡の影響を理解する。</td>
</tr>
<tr>
<td>15</td>
<td>根東・田中</td>
<td>反応機構解析と熱力学</td>
<td>反応機構解析における熱力学の影響を理解する。</td>
</tr>
</tbody>
</table>

【成績評価方法】

筆記試験と出席状況により評価する。

【教科書および参考書】

指定無し
授業科目名 分析化学3
配当学年（セメスター） 3年（5）
単位数 2
担当教員 大江 知行，後藤 貴章

【目的と概要】

生体内の薬物の質的、量的変動を的確に把握することは、医薬品の有効性と安全性の確保や体内動態解析を含めた創薬研究並びに薬物の適性使用においてきわめて重要である。一方、病態時に挙動の変化するタンパク質やペプチドなどの生体分子の解析は、創薬研究のみならず生命科学研究においても不可欠となる。本講では、こうした目的に用いられる各種分離並びに高感度分析法の原理と実際を理解することを目的とする。

【学習の到達目標】

創薬科学研究や生命科学研究並びに臨床研究で用いられる代表的な分析技術の原理を説明でき、目的に即した生体試料の前処理並びに取り扱いができる。また、質量分析法を用いる生体分子の定量と定性の基礎を理解し、生体分子解析への応用例について説明できる。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項 目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大江</td>
<td>臨床分析化学概論</td>
<td>生体内微量生理活性物質、薬物測定の意義とその方法論について理解する。</td>
</tr>
<tr>
<td>2</td>
<td>大江</td>
<td>生体試料の取り扱い</td>
<td>生体試料の種類、サンプリング法、取り扱い上の注意、および保存法について理解する。</td>
</tr>
<tr>
<td>3</td>
<td>大江</td>
<td>分析データの信頼性</td>
<td>分析データの信頼性を確保するための分析法のvalidation、標準化について理解する。</td>
</tr>
<tr>
<td>4</td>
<td>大江</td>
<td>試料の前処理</td>
<td>生体成分の分析に用いられる各種前処理法の原理と特徴を理解する。</td>
</tr>
<tr>
<td>5</td>
<td>大江</td>
<td>高速液体クロマトグラフィーⅠ</td>
<td>生体成分の分析に汎用される高速液体クロマトグラフィーにおける溶質の保持挙動に関わる因子を考え、理解する。</td>
</tr>
<tr>
<td>6</td>
<td>大江</td>
<td>高速液体クロマトグラフィーⅡ</td>
<td>高速液体クロマトグラフィーにおける溶質の立体構造と分離挙動の関係を考え、理解する。</td>
</tr>
<tr>
<td>7</td>
<td>後藤</td>
<td>アフィニティークロマトグラフィー</td>
<td>生物学的親和性を利用してアフィニティークロマトグラフィーの特徴を理解する。</td>
</tr>
<tr>
<td>8</td>
<td>大江</td>
<td>電気泳動法Ⅰ</td>
<td>生体高分子の解析に汎用されるゲル電気泳動法の原理と特徴を理解する。</td>
</tr>
<tr>
<td>編集者</td>
<td>章目</td>
<td>内容</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>大江</td>
<td>電気泳動法II</td>
<td>超高分離能を有するキャピラリー電気泳動法の原理と特徴を理解する。</td>
<td></td>
</tr>
<tr>
<td>大江</td>
<td>質量分析法I</td>
<td>高速液体クロマトグラフィー/マススペクトロメトリーによる低分子の高感度分析の基礎を理解する。</td>
<td></td>
</tr>
<tr>
<td>大江</td>
<td>質量分析法II</td>
<td>安定同位元素標識体を利用する生理活性物質の体内動態解析法について理解する。</td>
<td></td>
</tr>
<tr>
<td>大江</td>
<td>タンパク質解析法I</td>
<td>質量分析法におけるタンパク質・ペプチドのイオン化、そのマススペクトルの解析法を理解する。</td>
<td></td>
</tr>
<tr>
<td>大江</td>
<td>タンパク質解析法II</td>
<td>質量分析法を用いるタンパク質同定法について理解する。</td>
<td></td>
</tr>
<tr>
<td>後藤</td>
<td>免疫測定法I</td>
<td>免疫原のデザインと得られる抗体の特異性の関係を考え、抗原・抗体反応を活用する免疫測定法の測定原理とその特徴を理解する。</td>
<td></td>
</tr>
<tr>
<td>後藤</td>
<td>免疫測定法II</td>
<td>低分子化合物に用いられる競合型測定系と高分子に対して利用可能な非競合型測定系の原理と特徴について理解する。</td>
<td></td>
</tr>
</tbody>
</table>

【成績評価方法】
主に筆記試験を基礎に評価する。

【参考書】
「薬学生のための臨床化学」改訂第2版 後藤順一、片山善章編、南江堂 (2005)
「パートナー分析化学I改訂第2版」萩中 洋・山口政俊・千熊正彦編、南江堂 (2012)
「パートナー分析化学II改訂第2版」山口政俊・升島 努・能田 均編、南江堂 (2012)
「機器による医薬品分析」山川浩司、鈴木真喜編、講談社サイエンティフィック (1994)
授業科目名 | 物理化学3 | 配当学年（セメスター） | 3年（5）
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>単位数</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>担当教員</td>
<td>安斉 順一</td>
<td></td>
</tr>
</tbody>
</table>

【目的と概要】
本授業科目では、2セメおよび3セメで修得した授業科目「化学B」および「物理化学2」の理解を基盤として、生体における物理化学現象や医薬関連材料などを理解することを目的とする。本科目では、当該領域における最先端の研究動向を随時紹介する。

【学習の到達目標】
コロイドや高分子化合物（特に高分子電解質）の特徴とそれを利用したゲルの利用、各種の分子膜の調製方法と特徴、およびそれらの医薬・製剤学への応用などについて基本原理とともに最新の研究動向を理解する。

【授業内容】
<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項 目</th>
<th>授 業 内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>安斉</td>
<td>分散系とコロイド</td>
<td>分散系としてのコロイドの具体例とその特徴、サイズの評価法、および製剤における重要性について理解する。</td>
</tr>
<tr>
<td>2</td>
<td>安斉</td>
<td>高分子とゲル1</td>
<td>各種高分子材料およびそれを用いた高分子ゲルの特徴について認識を深める。</td>
</tr>
<tr>
<td>3</td>
<td>安斉</td>
<td>高分子とゲル2</td>
<td>高分子電解質の特徴とpHに依存したゲルの性質について理解する。</td>
</tr>
<tr>
<td>4</td>
<td>安斉</td>
<td>高分子とゲル3</td>
<td>ソフトマテリアルとしての高分子ゲルの応用の実例について学ぶ。</td>
</tr>
<tr>
<td>5</td>
<td>安斉</td>
<td>高分子とゲル4</td>
<td>高分子ゲルの応用の実例を学ぶ。</td>
</tr>
<tr>
<td>6</td>
<td>安斉</td>
<td>界面活性剤1</td>
<td>イオン性および非イオン性界面活性剤の化学構造の特徴と溶液の物理化学的性質について理解する。</td>
</tr>
<tr>
<td>7</td>
<td>安斉</td>
<td>界面活性剤2</td>
<td>界面活性剤のミセル形成とその熱力学、ミセルの利用、などについて学ぶ。</td>
</tr>
<tr>
<td>8</td>
<td>安斉</td>
<td>分子膜1</td>
<td>単分子膜や2分子膜の作製法、構造的および物理化学的特徴、またその利用について理解する。</td>
</tr>
<tr>
<td>9</td>
<td>安斉</td>
<td>分子膜2</td>
<td>ラングミュアープロジェクト膜や交互疊積膜の作製法、構造的および物理化学的特徴、またその利用について理解する。</td>
</tr>
<tr>
<td>10</td>
<td>安斉</td>
<td>分子膜3</td>
<td>各種の分子膜を用いた分離と精製、選択透過膜、膜電位、信号変換、センシング、などの応用例を学ぶ。</td>
</tr>
<tr>
<td>11</td>
<td>安斉</td>
<td>リポソーム</td>
<td>リポソームの作製方法、特徴、種類、製剤への応用などについて理解する。</td>
</tr>
<tr>
<td>ページ</td>
<td>索引</td>
<td>内容</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>安斉</td>
<td>エマルションの作製方法、特徴、種類、製剤への応用などについて理解する。</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>安斉</td>
<td>ミクロカプセル・ミクロスフェアの作製方法、特徴、種類、製剤への応用などについて理解する。</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>安斉</td>
<td>レオロジー</td>
<td>物質の弾性、粘性、粘弾性、などの概念を理解し、製剤への利用について学ぶ。</td>
</tr>
<tr>
<td>15</td>
<td>安斉</td>
<td>粉体</td>
<td>粉体の形状や粒度分布とその評価方法、および製剤における重要性について理解する。</td>
</tr>
</tbody>
</table>

【成績評価方法】定期試験と小試験。

【教科書】「物性物理化学」大島・半田編、南江堂（1999）

【その他】本科目の履修事項は薬剤師国家試験に合格するために必須の内容である。
薬理学は生体におよぼす薬物の影響、すなわち薬理作用を研究し、薬がなぜ効くのかを探究する学問である。また、薬理作用を基に生体の機能を研究する学問でもある。本講義では、薬物治療を考える上で不可欠な薬理作用と生体機能との関連を理解することを目的とする。薬理学１、薬理学２および薬理学３の内容に続いて、薬理学４では、内分泌系、血液・造血器系、炎症・免疫系に作用する薬物について理解する。また、感染症の治療に用いられる薬物（抗生物質、化学療法薬、消毒薬、抗ウイルス薬）について理解することを目的とする。

【学習の到達目標】
薬物療法の基礎となる知識およびその考え方について理解する。また、内分泌系、血液・造血器系、炎症・免疫系に作用する薬物について理解し、薬物による疾患の治療効果が現れる仕組みを理解する。さらに、病原体と感染症について理解し、それらに対する治療薬について説明でき、その薬物作用機構を考えることができる。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>守屋</td>
<td>ホルモン（1）</td>
<td>視床下部および下垂体ホルモン、神経ステロイドの働きと関連する薬物について理解する。</td>
</tr>
<tr>
<td>2</td>
<td>守屋</td>
<td>ホルモン（2）</td>
<td>甲状腺ホルモン、性ホルモン、副甲状腺ホルモンの働きと関連する薬物について理解する。</td>
</tr>
<tr>
<td>3</td>
<td>守屋</td>
<td>ホルモン（3）</td>
<td>インスリンの働きを学び、糖尿病治療薬について理解する。</td>
</tr>
<tr>
<td>4</td>
<td>守屋</td>
<td>血液および造血器作用薬（1）</td>
<td>血液の組成および役割を学び、止血のメカニズムを理解する。さらに、止血薬について理解する。</td>
</tr>
<tr>
<td>5</td>
<td>守屋</td>
<td>血液および造血器作用薬（2）</td>
<td>抗血栓薬および貧血治療薬について理解する。</td>
</tr>
<tr>
<td>6</td>
<td>守屋</td>
<td>抗炎症薬（1）</td>
<td>炎症を抑える薬物について、ステロイド剤を中心に理解する。</td>
</tr>
<tr>
<td>7</td>
<td>守屋</td>
<td>抗炎症薬（2）</td>
<td>非ステロイド性抗炎症薬および解熱鎮痛薬について理解する。</td>
</tr>
<tr>
<td>8</td>
<td>守屋</td>
<td>免疫抑制薬と免疫刺激薬</td>
<td>免疫を調節する薬物およびアレルギー疾患に用いる薬物について理解する。</td>
</tr>
<tr>
<td>9</td>
<td>守屋</td>
<td>感染症治療薬（1）</td>
<td>感染症とその原因となる病原微生物について理解し、感染症とその治療における歴史を学ぶ。</td>
</tr>
<tr>
<td>10</td>
<td>守屋</td>
<td>感染症治療薬（2）</td>
<td>感染症を引き起こす細菌の形態と構造、およびその分類について学ぶ。</td>
</tr>
</tbody>
</table>
守屋 感染症治癒薬（3） 感染症に対する化学療法薬の作用機序の原理と選択毒性について理解する。

守屋 感染症治癒薬（4） 化学療法薬の作用機序の概論について学び、抗生物質のうちペンシリンなどの細胞壁合成阻害薬の作用機序と臨床応用について理解する。

守屋 感染症治癒薬（5） 抗生物質のうちテトラサイクリンなどのタンパク合成阻害薬の作用機序と臨床応用について理解する。

守屋 感染症治癒薬（6） 合成抗生物質薬や抗結核薬、抗真菌薬について、その作用機序と臨床応用について理解する。

守屋 感染症治癒薬（7） 病原微生物のうち、ウイルスによる疾病およびそれらに作用する薬物について理解する。

成績評価方法

bangiki shiken（中間試験および定期試験）と出席状況をもとに評価する。

教科書 「New薬理学」田中千賀子・加藤隆一 編集、南江堂

参考書 「シンプル微生物学」東 匡伸・小熊厚二 編集、南江堂
「新薬理学テキスト」佐藤進 編、亜川書店
「新薬理学入門」柳澤満行 他編著、南山堂
「グッドマン・ギルマン薬理書」藤原元始 他監訳、亜川書店
授業科目名 公衆衛生学 1

配当学年（セメスター） 3年（5）

単位数 2

担当教員 永沼 章、黄 基旭

高橋 勉

【目的と概要】
公衆衛生学は人間の健康の保持・増進と疾病予防のための方策を検討する学問である。本講義では、人間集団の健康状態および疾病の実態の把握方法、疾病の一次的原因（食習慣や生活環境など）の究明方法、疾病予防の実際などを理解し、さらに、健康を維持する上で最も重要な水と空気の衛生、そして近年大きな社会問題となっている有害物質による環境汚染などについての知識を得る。

【学習の到達目標】
1．統計データなどを基にして、特定集団の健康状態を評価する方法を理解する。
2．水や空気などの安全性と污染対策法を理解する。
3．環境要因による健康被害を防ぐ方法を理解する。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項 目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>永沼</td>
<td>公衆衛生学概論</td>
<td>公衆衛生学の歴史と社会的意義</td>
</tr>
<tr>
<td>2</td>
<td>永沼</td>
<td>環境因子と健康</td>
<td>人間の健康に影響を及ぼす環境因子として物理的因子（温度、湿度、気圧、騒音、紫外線、放射線など）、化学的因子（農薬、食品添加物、重金属など）および生物学的因子（動物、植物、病原体微生物など）がある。これら環境因子と生体との関わりについて理解する。</td>
</tr>
<tr>
<td>3</td>
<td>永沼</td>
<td>保健統計</td>
<td>人間集団の健康や疾病の実態を把握する方法のひとつである保健統計の意義とその評価の仕方について理解する。</td>
</tr>
<tr>
<td>4</td>
<td>永沼</td>
<td>疫学</td>
<td>疾病を予防するためには、病因を明らかにする必要がある。この病因を探究することを目的とする学問である「疫学」の方法と意義について過去の例を示しながら理解する。</td>
</tr>
<tr>
<td>5</td>
<td>黄</td>
<td>疾病予防と健康管理</td>
<td>一部の成人病や感染症の病因が疫学的研究などによって明らかにされており、現在はこれらについて有効な予防対策がとられている。この疾病予防対策の意義と効果について歴史的経過を含めて理解する。</td>
</tr>
<tr>
<td>6</td>
<td>黄</td>
<td>有害物質の環境中動態</td>
<td>有害物質による環境汚染の進行は人類の存続の関わる重大課題といっても過言ではない。この有害物質が環境中に放出されてから人間の体内に取り込まれるまでの経路、および環境中濃縮について理解する。</td>
</tr>
<tr>
<td>7</td>
<td>高橋</td>
<td>無機有害物質と健康</td>
<td>無機有害物（有機重金属を含む）による健康影響をイタイイタイ病や水俣病などの実例をあげながら理解する。</td>
</tr>
</tbody>
</table>
永沼

8 有機有害物質と健康
人間の健康に影響を与える有機物質が環境中に多く存在し、我々はこれから有機有害物質の脅威に曝されながら生活をしてい る。農薬やダイオキシン類などをはじめとするこれら有機有害物質の毒性に関する最新の知見を得る。

9 化学物質の安全性評価
化学物質の毒性および安全性評価法について理解する。

10 水の衛生
人間の健康を維持する上で清浄な生活水の供給は不可欠である。我々が通常飲用している水がどの様に処理されたものなのか、また、どの程度清浄であるかを理解する。

11 水質汚濁
産業排水などによって環境水（河川水、湖沼水、海水、地下水など）の汚濁が進行しつつある。この水質汚濁とその試験法について理解する。

12 空気環境の衛生
室内空気および大気と健康との関わりについて理解する。

13 大気汚染
我々は大気の吸収を避けて生活することはできない。したがって大気汚染は生物にとって深刻な問題である。この大気汚染の現状とその影響および対策、試験法などについて理解する。

14 産業衛生
働く人々の健康を保持し、職業性疾病を予防するための保健衛生活動を産業衛生（または産業保健）という。この産業衛生上問題となる職業性疾病の種類と原因、およびその予防対策について理解する。

15 環境問題とその対策
環境に関する法律、衛生行政、地球規模環境問題などについて理解する。

[成績評価方法]
中間試験（講義中に実施）および定期試験により評価する。

[その他]
講義内容のほとんどが薬剤師国家試験出題基準に含まれる。

[教科書] 「衛生薬学-健康と環境-」永沼 章、妹野誠一郎、平塚 明 編集、丸善

[参考書] 「必携・衛生試験法」日本薬学会 編集、金原出版
「環境白書」 環境省 編集、財務省印刷局
「厚生白書」厚生労働省 編集、厚生統計協会
授業科目名（対象学科） 天然物化学（創薬科学科） 配当学年（セメスター） 3年（6）
単位数 2 担当教員 菊地 晴久

【目的と概要】
天然物化学の歴史は、医薬品として古くから用いられてきた天然資源に源を求めることができる。天然物化学では、天然資源が作り出す天然物の化学構造、化学的性質、生物活性を学ぶ。

【学習の到達目標】
天然物化学の歴史、その薬学における役割を学ぶことにより、天然資源や天然物の重要性を理解する。

【授業内容】
<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>菊地</td>
<td>天然医薬品とリード化合物</td>
<td>医薬品に実用化されている天然物や医薬品開発のリード化合物となった天然物を学ぶ。</td>
</tr>
<tr>
<td>2</td>
<td>菊地</td>
<td>同上</td>
<td>同上</td>
</tr>
<tr>
<td>3</td>
<td>菊地</td>
<td>同上</td>
<td>同上</td>
</tr>
<tr>
<td>4</td>
<td>菊地</td>
<td>シーズの開拓</td>
<td>天然資源の創薬シーズとしての重要性を学ぶ。</td>
</tr>
<tr>
<td>5</td>
<td>菊地</td>
<td>天然物の単離</td>
<td>天然物の代表的な抽出法、分離精製法を学ぶ。</td>
</tr>
<tr>
<td>6</td>
<td>菊地</td>
<td>同上</td>
<td>同上</td>
</tr>
<tr>
<td>7</td>
<td>菊地</td>
<td>抗生物質</td>
<td>抗菌物質、抗がん物質などとして医薬品のなかで重要な位置を占める抗生物質を学ぶ。</td>
</tr>
<tr>
<td>8</td>
<td>菊地</td>
<td>同上</td>
<td>同上</td>
</tr>
<tr>
<td>9</td>
<td>菊地</td>
<td>同上</td>
<td>同上</td>
</tr>
<tr>
<td>10</td>
<td>菊地</td>
<td>同上</td>
<td>同上</td>
</tr>
<tr>
<td>11</td>
<td>菊地</td>
<td>同上</td>
<td>同上</td>
</tr>
<tr>
<td>12</td>
<td>菊地</td>
<td>抗生物質の生産</td>
<td>抗生物質の生産方法を学ぶ。</td>
</tr>
<tr>
<td>13</td>
<td>菊地</td>
<td>同上</td>
<td>同上</td>
</tr>
<tr>
<td>14</td>
<td>菊地</td>
<td>海洋生物成分</td>
<td>医薬品開発のリード化合物探索の有望な資源である海洋生物の生物活性物質を学ぶ。</td>
</tr>
<tr>
<td>15</td>
<td>菊地</td>
<td>同上</td>
<td>同上</td>
</tr>
</tbody>
</table>
成績評価方法
出席と定期試験により評価する。

教科書「ベーシック薬学教科書シリーズ 7 生薬学・天然物化学」吉川雅之編、化学同人（2008）

参考書「天然生理活性物質の化学」多田全宏編、宣協社（2000）
「天然物化学改訂第5版」田中治、戸崎重男、相見則郎、永井正博編、東京堂（1998）
「薬用資源学」山崎幹夫、斎藤和季編、丸善（1997）
授業科目名：有機合成化学（創薬科学科）
配当学年（セメスター）：3年（6）
単位数：2
担当教員：岩渕 好治、徳山 英利

【目的と概要】
医薬剤を代表例とする多官能基性有機分子の合成設計においては、化合物のもつ価値に適した合成戦略、適切なタイミングでの官能基の導入や変換と、それを行うための保護基の有効利用、試薬や化合物の立体的環境を利用した立体選択性の応用などがこれまでに学んだ有機合成の総合的な応用力が試される。「有機合成化学」では、過去に達成された合成を解析することを通じて合成設計の立て方について学ぶ。

【学習の到達目標】
- 効率的な合成設計、立体および官能基選択性、保護基、出発原料の入手など合成設計に必要な基本的かつ一般的な事項を学ぶ。
- 様々な天然物の全合成スキームから、反応機構、立体および官能基選択性や合成戦略などを解析できるようになる。
- 論理的な合成設計、独創的な合成デザイン等を通じて有機化学を駆使した合成の面白さを味わう。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項 目</th>
<th>授 業 内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>岩渕・叶</td>
<td>全合成概説</td>
<td>収束的な合成設計等、合成経路の設計に必要な概念について学ぶ。</td>
</tr>
<tr>
<td>2</td>
<td>岩渕・叶</td>
<td>官能基変換概説</td>
<td>酸化、還元反応を中心に代表的な官能基変換反応について学ぶ。</td>
</tr>
<tr>
<td>3</td>
<td>岩渕・叶</td>
<td>官能基選択性変換</td>
<td>多官能基性化合物の官能基選択性の変換に関して、代表的な保護基とその利用法について学ぶ。</td>
</tr>
<tr>
<td>4</td>
<td>岩渕・叶</td>
<td>位置選択性変換</td>
<td>アルケンやベンゼン環の変換、非対称ケトンのアルキル化等、位置選択性が問題となる変換について学ぶ。</td>
</tr>
<tr>
<td>5</td>
<td>岩渕・叶</td>
<td>立体選択性変換</td>
<td>ケトンに対する挿絞付加反応等、様々な立体選択性の変換に関して、立体選択性の発現する機構等について学ぶ。</td>
</tr>
<tr>
<td>6</td>
<td>岩渕・叶</td>
<td>不斉合成</td>
<td>光学活性化合物を合成するための手法（光学分割、不斎反応、キラルブール法、酵素法など）について学ぶ。</td>
</tr>
<tr>
<td>7</td>
<td>岩渕・叶</td>
<td>実践的な有機合成</td>
<td>ピロリジンアルコリドの全合成を採り上げ、実践的な合成に関して解説する。</td>
</tr>
<tr>
<td>8</td>
<td>徳山</td>
<td>テルペン類の全合成</td>
<td>代表的なテルペン類の全合成について学ぶ。</td>
</tr>
<tr>
<td>9</td>
<td>徳山</td>
<td>ステロイド類の全合成</td>
<td>代表的なステロイド類の全合成について学ぶ。</td>
</tr>
<tr>
<td>10</td>
<td>徳山</td>
<td>プロスタグランジン類の全合成</td>
<td>代表的なプロスタグランジン類の合成法について学ぶ。</td>
</tr>
</tbody>
</table>
[成績評価方法] 出席状況、発表内容、講義中の議論への寄与度、筆記試験/レポート等を総合評価。

[参考書] 「岩波講座 現代化学への入門 10 天然有機化合物の合成戦略」鈴木啓介著、岩波書店 (2007)
「逆合成のノウハウ 有機合成の戦略」C. L. Willis, M. Wills 著、富岡清訳、化学同人 (1998)
「プログラム学習 有機合成化学」S. Warren 著、野村祐次郎、友田修司訳
講談社サイエンティフィック (1979)

人名反応を基にした合成戦略に関する参考書
「人名反応に学ぶ有機合成戦略」L. Kürti, B. Czakó 著、富岡清監訳、化学同人 (2006)

代表的な天然物の全合成を詳説した参考書

官能基の変換や保護を説明した参考書
「官能基の化学」James R. Hanson 著、豊田真弘訳、化学同人 (2003)
授業科目名：医薬品化学２（創薬科学科）
配当学年（セメスター）：3年（6）
単位数：1
担当教員：土井 隆行

【目的と概要】
医薬品創製の歴史からゲノム創薬に代表される現在の高度な創薬研究について、特許取得や医薬品として上市されるまでに守るべき規範とともに学習する。医薬品の標的分子の機能、構造の特徴を学び、医薬品が認識し、結合・機能するために重要となるファーマコフォア等の概念について学ぶ。代表的な医薬品の開発事例をもとに、創薬に必要となる基本的知識を学ぶ。

【学習の到達目標】
医薬品開発の流れ、これまでに用いられている研究手法について説明できるようになる。
特許の意義、新薬開発研究にかかる規範について説明できるようになる。
ファーマコフォア、生物学的等価体、構造活性相関について理解し、説明できるようになる。
ヘテロ環化合物の構造と名称の対応がつか、その化学的性質を理解できるようになる。
代表的な医薬品の標的分子に対する作用機構について化学構造をもとに説明できるようになる。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項 目</th>
<th>授 業 内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>土井</td>
<td>創薬の流れ</td>
<td>医薬品の歴史、創薬の現状、および医薬品における探索初期から開発化合物決定までの創薬の流れについて学習する。</td>
</tr>
<tr>
<td>2</td>
<td>土井</td>
<td>最近の創薬研究</td>
<td>ゲノム創薬、バイオ医薬品、自動薬効評価系合成装置、コンピュータを活用したドラッグデザインについて学習する。</td>
</tr>
<tr>
<td>3</td>
<td>土井</td>
<td>医薬品開発の基礎</td>
<td>特許、ジェネリック医薬品、新薬の研究開発にかかる規範について学習する。</td>
</tr>
<tr>
<td>4</td>
<td>土井</td>
<td>標的となる生体分子</td>
<td>薬物のおもな標的分子の機能と構造上の特徴、および薬物と生体分子との相互作用の模式、ならびに薬物の基本的な作用発現の模式を学習する。</td>
</tr>
<tr>
<td>5</td>
<td>土井</td>
<td>医薬品の構造</td>
<td>ファーマコフォア、生物学的等価体、構造活性相関の概念について学ぶ。</td>
</tr>
<tr>
<td>6</td>
<td>土井</td>
<td>代表的な医薬品１</td>
<td>代表的な医薬品の開発事例をもとに創薬研究について学習する。また、医薬品に多くみられるヘテロ環化合物について学習する。</td>
</tr>
<tr>
<td>7</td>
<td>土井</td>
<td>代表的な医薬品２</td>
<td>代表的な医薬品の開発事例をもとに創薬研究について学習する。また、医薬品に多くみられるヘテロ環化合物について学習する。</td>
</tr>
</tbody>
</table>
[成績評価方法]
筆記試験と出席状況により評価する。

[教科書]
ベーシック薬学教科書シリーズ⑥ 創薬科学・医薬化学 橘高 敦史 編 化学同人（2011）

[参考書]
創薬科学 医薬品のdiscoveryとdevelopment 長 秀達 著 南山堂 (2012)
創薬 20の事例にみるその科学と研究開発戦略 山崎 恒義・堀江 透 編 丸善 (2009)
芳香族ヘテロ環化合物の化学 反応性と環合成 坂本 尚夫，廣谷 功 著 講談社 (2008)
最新創薬化学 上下巻 探索研究から開発まで 改訂第2版 C. G. Wermuth 編著 長瀬 博 監訳 (2011)
授業科目名
薬品構造解析学（創薬科学科）
配当学年（セメスター） ３年（6）
単位数 ２
担当教員 大島 久雄、山口 雅彦
根本 義則、岩瀬 好治
土井 隆行、徳山 英利
小中 好幸、江 直樹
菊地 冬、有澤 美枝子
吉田 将人、増田 裕一
植田 景史、重野 真徳
齋藤 望

[目的と概要]

医薬品のほとんどは有機化合物である。従って、創薬における有機合成化学の役割は極めて大きい。更に、将来、薬学に携わる研究者には合成系、生物系を問わず低分子有機化合物の構造ならびにそれから由来する物性についての知識が必須となる。本授業では20人程度のグループに分け、演習形式で各種スペクトル（MS、UV、IR、NMR）による有機化合物の構造決定について講義を行い、機器スペクトルによる有機化合物の同定・確認のための能力を養うことを目的とする。

[学習の到達目標]

MS、UV、IR、NMR の基本原理を理解し、これらのデータに基づいて低分子有機化合物の分子構造を推定することができるようになる。

[授業内容]

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項 目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大島（グループA）山口（グループB）</td>
<td>総論－1：質量分析法 (MS スペクトル)</td>
<td>Mass スペクトルは化合物の分子量はもとより、その構造に関する有用な情報を提供する。MS スペクトルおよび高分解能 MS スペクトルの原理を学ぶとともに、分子構造に特異的なフラグメントーション反応の有機電子論を理解する。</td>
</tr>
</tbody>
</table>
| 2 | 根本（グループA）岩瀬（グループB） | 総論－2：赤外分光法 (IR スペクトル) 紫外・可視分光法 | IR スペクトルは化合物中の官能基の検出に有効である。スペクトルの原理を物理化学の面から捉え、官能基と特性吸収帯との関係を理解する。
紫外・可視吸収スペクトルは化合物に特有のものである。電子遷移を引き起こす構造基の種類と吸収スペクトルとの関係を理解する。 |
| 3 | 土井（グループA）徳山（グループB） | 総論－3：プロトン核磁気分光法 (H-NMR スペクトル) | 1H-NMR スペクトルは化合物を構成する水素の数ならびにそれらの水素がどのような環境にかかっているかを教えてくれる。講義ではスペクトルの原理、特に化学シフトや結合定数がどのようにして生ずるかを理解する。 |
| 4 | 田中（グループA）葉（グループB） | 各論－1：脂肪族化合物の構造解析その1 | 比較的簡単な脂肪族飽和化合物の構造解析演習を行なう。特に 1H-NMR スペクトルにおいてメチル基の化学シフト、結合定数の着目し構造決定を行なう。Geminal ならびに vicinal プロトン間の結合定数の違い等、微細な構造とスペクトル情報との相関を理解する。 |

— 73 —
5 菊地（ゲルーパ A）各論－2：脂肪族化合物の構造解析その2
脂肪族不飽和化合物の構造解析を行う。オレフィンの幾何異性体を結合定数より判断する。また、Massスペクトルにおけるフラグメントーション解析を解析し、二重結合の位置を推定する。UVスペクトルによって共役系の存在を予測する。

6 大島（ゲルーパ A）各論－3：芳香族化合物の構造解析その1
モノ置换ペンゼンの1H-NMRスペクトルにおける結合定数に対する置換基の効果を理解する。また、IRスペクトルにおける面外変角振動ならびに二重結合の吸収よりモノ置换ペンゼン構造を推定する。

7 根東（ゲルーパ A）各論－4：芳香族化合物の構造解析
多置換ベンゼンの置換基の位置を1H-NMRスペクトルにおける化学シフトならびに結合定数より推定する方法を学ぶ。また、UVスペクトルと置換基の性質（電子供与性あるいは電子求引性）、構造との相関について学ぶ。

8 土井（ゲルーパ A）各論－5：アリール類の構造解析その1
簡単な第一級、第二級、第三級アルコールの構造をMass、NMRスペクトルから決定する方法を学ぶ。MassスペクトルにおけるM⁺-17、M⁺-18フラグメントの意味、およびIRスペクトルでの水酸基の分子内および分子間水素結合による波数変化の理由を理解する。

9 田中（ゲルーパ A）各論－6：アリール類の構造解析その2
より複雑なアルコールとして2価のアルコールあるいは水酸基に隣接した官能基を持つアリールの構造解析を行う。1H-NMR、IRスペクトルより分子内あるいは分子間における水素結合の存在を明らかにする。Massスペクトルにおいてはβ開裂に着目し構造解析を行う。

10 菊地（ゲルーパ A）各論－7：アーデヒド類の構造解析
1H-NMRスペクトルにおいて非特異的に観察されるアデヒドプロトンの化学シフトについて説明する。また、IRスペクトルにおけるカルボニル基の吸収が置換基によってどのように変化するかを理解し、アデヒドの構造解析に応用する。

11 大島（ゲルーパ A）各論－8：ケトン類の構造解析
アールヒドと同様にケトンのカルボニル基は置換基によって広範囲の波数領域に観察される。従って、IRスペクトルはケトン類の構造解析に極めて有用な情報を提供する。いくつかの問題例を解きながらその理由について理解を深める。

12 土井（ゲルーパ A）各論－9：カルボン酸類の構造解析その1
カルボン酸に特徴的なIRスペクトルならびに1H-NMRスペクトルについて学ぶ。さらにその誘導体である酸ハライド、無水物やアミド、エステルの特性吸収帯について問題例を参考にしながら理解を深める。

13 根東（ゲルーパ A）各論－10：カルボン酸類の構造解析その2
カルボン酸誘導体のMassスペクトルはβ開裂、McLafferty転位等特徴的なフラグメントーションを示すため、構造解析に極めて有効である。それらのメカニズムを有機電子論的観点から考察する。
14 増田（グループA） 各論－11：アミノ類の構造解析 15 植田（グループA） 各論－12：フェノール類の構造解析
重野（グループB） の構造解析 齋藤（グループB） フェノール類の構造解析
IR スペクトルにおけるアミンの特性吸収ならびにMass スペクトルにおける開裂様式について理解する。これらスペクトルがアミノ類の構造解析に有効であることを学ぶ。
フェノール類の水酸基は、IR および NMR スペクトルにおいて分子内あるいは分子間水素結合によって特徴的に吸収を示す。これらの現象を構造有機化学の面から理解する。また Mass スペクトルに見られる特徴的なピークをもとにフェノール類の構造解析を行なう。

【成績評価方法】
出席、演習発表、中間試験、および定期試験の結果を総合して評価する。

【参考書】
「有機化合物のスペクトルによる同定法－MS, IR, NMR の併用－ (第7版)」
R. M. Silverstein・F. X. Webster 著、荒木 峻・益子洋一郎・山本 修・鎌田利紘 訳
東京化学同人（2006）
授業科目名
臨床医学概論（創薬科学科） 配当学年（セメスター） 3年（6）
病院薬学概論 1（薬学科） 単位数 2

担当教員 佐藤 博、高橋 信行
片桐 秀樹、山谷 晴雄
松岡 洋夫、亀岡 淳一
有馬 隆博、石井 智德
海野 倫明、黒澤 一
阿部 俊明、服部 俊夫
中保 利通、飯島 克則

【目的と概要】
医学の概念を知り、医学と薬学の境界領域を学ぶ。糖尿病、血液疾患、免疫疾患、消化器疾患、高血圧、腎臓病、呼吸器疾患、感染器疾患、精神神経疾患、外科疾患など各種の疾患について、それぞれの専門医による解説を通じて病気の診断、発症機序、病態、および薬物治療について理解する。

【学習の到達目標】
疾病・病態を理解し、病態の理解に基づく医療学的の在り方を考察する。更に最新の疾病診断を学び、今後自らが目指す指導的立場の薬剤師、あるいは薬剤に関わる研究者としての役割を自覚し、将来の臨床薬学の担い手としての基本を学ぶ。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>佐藤</td>
<td>内科学概論</td>
<td>内科学は、疾病の原因・病態を明らかにし、早期診断、適切な治療を通じて患者を社会復帰させる臨床科学である。代表例として腎臓病の診断と治療を取り上げながら、内科学の果たす役割を理解し、さらにその中で臨床薬学的な立場と考え方を構築していく。</td>
</tr>
<tr>
<td>2</td>
<td>高橋</td>
<td>腎臓と高血圧・概論</td>
<td>高血圧は非常にありふれた疾患であり、メタボリックシンドロームの一部としても重要である。しかしながらその原因が不明なことが多い。高血圧の成因として腎臓やホルモンの異常の果たす役割について理解し、その診断・治療法を学ぶ。</td>
</tr>
<tr>
<td>3</td>
<td>片桐</td>
<td>代謝病学概論</td>
<td>糖尿病、脂質異常症、高尿酸血症などに代表される代謝疾患は、近年のライフスタイルの変化によって、以前にも増して重要な疾患となっている。代謝疾患の成因と病態、薬剤を含めた治療について理解する。</td>
</tr>
</tbody>
</table>
4 山谷 老年病学概論
老年前医療は高齢者人口の増加によりわが国の45％の医療費に達している。老年前症候群と総称される疾患のうち、死亡率の増加している高齢者肺炎および慢性閉塞性肺疾患の診断法・治療法、予防方法を学びながら、高齢者疾患の特徴と予防法、治療法と、高齢者のQOL改善策について理解する。

5 松岡 精神疾患の病態と治療概論
内因性疾患（統合失調症、躁うつ病など）、心因性疾患（神経症など）、外因性疾患（中毒性疾患など）の成因と病態を学びながら、心の病のてらえ方と治療の仕方について理解する。

6 龜岡 血液学概論
貧血、自血病、悪性リンパ腫、血小板減少症などの血液疾患の診断と治療は、ここ10数年間に飛躍的な進歩を遂げている。遺伝子診断、分子標的療法、造血幹細胞移植などを含めて概説する。

7 有馬 生殖医学概論
生殖現象とは生命を定義する上で必要不可欠な現象である。その本質は多様性を生み出すことであり、命のために複雑な授与子形成や受精という営みを繰り返している。本講義ではヒト生殖現象の概観を捉え、薬学とも密接に関連してい る生殖医学について概説する。さらに妊娠への役割に関して必要な事項を学び理解する。

8 佐藤 CKD（慢性腎臓病）治療の最近の考え方
近年、CKD（慢性腎臓病）の概念が整理され、それに伴ってステージごとの管理目標や治療ガイドラインが確立しつつある。腎臓病のみならず心機能・脳血管疾患や各種動脈硬化性疾患の管理・治療においても重要なこれらの事項を学び、理解を深める。また、腎機能が低下した患者に対する薬剤の使い方について、臨床の現場の状況をふまえながら、その実情を学んでいく。

9 石井 リウマチ・膠原病学概論
関節リウマチに対する加療は、生物学的製剤はじめとした新しい薬剤の臨床応用が進み急速な進歩を遂げている。関節リウ マチを中心に膠原病の病態についての解説と最近の膠原病治療 の進歩を中心に概説する。

10 内藤 外科学概論
近代外科学の歴史と現在の外科的疾患の概要について学び、創傷治癒と外科療法における薬物療法の意義についても理解する。
また、医学・医療全般における外科学の役割と近未来に外科学が目指すものについて理解する。

11 黒澤 呼吸器病学概論
肺は酸素を取り入れ炭酸ガスを排出し、生体の内部環境を一定に保持するためのガス交換機能を営んでいる重要な臓器であることを理解する。このガス交換機能の破綻を呼吸不全というが、本講義では呼吸不全を来す主な呼吸器疾患について理解する。

12 阿部 眼科学概論・各論
外界の情報の80％は眼からの入力であると考えられており、他の臓器にはみられないしくみがいろいろ存在する。我々の眼はどのようにして外界からの情報処理するのかを、解剖学的、生理学的、生化学的、病態生理学的に解説する。また、これまで治療法がないとされた難治性網膜疾患治療のために、特殊な薬剤投与システム、遺伝子治 療、再生医療など最近の治療法も学ぶ。
13 服 部 感染症総論

世界最大の保健問題である、サハラ以南のエイズ・結核問題、また毎年1億人が感染するデングウィルス感染症など、災害においても重要な感染症についてもふれながら、これらの感染症に対する宿主反応についても概説する。

14 中 保 緩和医療学概論・各論

がん患者の痛みの治療におけるオピオイドの効果的な使い方と副作用対策、およびオピオイド抵抗性の痛みの鑑別法など、臨床現場での服薬指導上必要な事項を中心とし、緩和医療を取り巻く現状などに関しても理解する。

15 飯 島 消化器病学概論

消化器分野全体の新しい診断・治療法について理解するとともに、特に、近年、その進歩が著しいH.pylori感染と胃・十二指腸疾患の関連について理解を深める。

【成績評価方法】

レポートや、出席状況などで評価する。

【教科書・参考書】

「新臨床内科学・第9版」高久史亦監修、医学書院（2009年）
「今日の治療指針2014 私はこう治療している」山口徹・北原光夫 監修、医学書院
授業科目名：新薬開発論（創薬科学科）　配当学年（セメスター）：3年（6）　単位数：2　担当教員：富岡 佳久、片岡 希保、吉成 浩一、松本 茂樹、三浦 慎一、平良 伸一、山本 史、中村 亮介、斎藤 嘉朗、菊池 克史

【目的と概要】
薬効スクリーニングや実験動物を用いた非臨床試験により選択された医薬品候補化合物が、ヒトにおいて安全かつ有効な医薬品として使用されるために、その候補化合物の薬物動態や毒性の把握が重要である。また、上市後も、市場調査などを通じて副作用情報に留意する必要がある。本授業では、医薬品開発にかかわる薬物動態、安全性の基礎を学習するとともに、製薬関連企業研究者による講義を通じて、実際の企業における新薬開発の概要を学習する。さらに、レギュラトリーサイエンスを含めた医薬品の承認・申請、市場調査に関するシステムについても学習する。

【学習の到達目標】
薬物の体内動態や副作用（毒性）発現機構を理解し、有効かつ安全な新薬を開発するための薬物動態学・安全性研究の重要性を説明できる。また、医薬品の探索から市場調査までのしくみを理解し、新薬開発の概要を説明できる。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項 目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>富岡</td>
<td>オリエンテーション・総論</td>
<td>医薬品開発における薬物動態学、毒性学（安全性学）の意義を理解する。</td>
</tr>
<tr>
<td>2</td>
<td>三浦</td>
<td>企業における医薬品開発（1）</td>
<td>薬物動態と安全性研究の役割：製薬企業における医薬品開発における薬物動態および安全性研究の進め方やその意義を理解する。</td>
</tr>
<tr>
<td>3</td>
<td>松本</td>
<td>企業における医薬品開発（2）</td>
<td>薬物動態と安全性研究の役割：製薬企業における医薬品開発における薬物動態および安全性研究の進め方やその意義を理解する。</td>
</tr>
<tr>
<td>4</td>
<td>平良</td>
<td>企業における医薬品開発（3）</td>
<td>薬物動態と安全性研究の役割：製薬企業における医薬品開発における薬物動態および安全性研究の進め方やその意義を理解する。</td>
</tr>
<tr>
<td>5</td>
<td>池田</td>
<td>大学における医薬品・医療機器の開発</td>
<td>基礎研究・橋渡し研究・臨床試験の開発支援の進め方やその意義を理解する。</td>
</tr>
<tr>
<td>6</td>
<td>山本</td>
<td>医薬品の審査等</td>
<td>PDBA による医薬品、医療機器等の審査及び安全対策、並びに健康被害対策の進め方やその意義を理解する。</td>
</tr>
<tr>
<td>7</td>
<td>吉成</td>
<td>安全性（1）</td>
<td>薬物開発における安全性研究の重要性について学ぶ。</td>
</tr>
<tr>
<td>8</td>
<td>吉成</td>
<td>安全性（2）</td>
<td>薬物開発における安全性研究の重要性について学ぶ。</td>
</tr>
<tr>
<td>9</td>
<td>中村</td>
<td>レギュレーター/サイエンス（1）</td>
<td>薬物開発における薬物動態研究の重要性について学ぶ。</td>
</tr>
<tr>
<td>10</td>
<td>中村</td>
<td>レギュレーター/サイエンス（2）</td>
<td>薬物開発における薬物動態研究の重要性について学ぶ。</td>
</tr>
</tbody>
</table>

皮膚には多くの免疫担当細胞が存在しており、医薬品が何らかの免疫毒性を有する場合、皮膚に症状が薬品化されることが多い。本講義では、医薬品によるアレルギーと皮膚症状のメカニズムについて学びます。
<table>
<thead>
<tr>
<th>11</th>
<th>齋藤</th>
<th>レギュラトリーサイエンス（3）</th>
<th>ニズムについて学ぶ。医薬品の重篤な副作用ならびにその対応・防御方法（遺伝子多型の利用など）に関して学ぶ。</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>齋藤</td>
<td>レギュラトリーサイエンス（4）</td>
<td>医薬品開発における肝毒性評価の重要性を過去の事例から理解するとともに、反応性中間体など毒性発現に関わる機序や現在の評価法および問題点について学ぶ。</td>
</tr>
<tr>
<td>13</td>
<td>菊地</td>
<td>再生医療の臨床研究</td>
<td>Regenerative medicine として実際の医療で行われている再生医療研究シーズを紹介し、将来的な事業への展開可能性を考察する。</td>
</tr>
<tr>
<td>14</td>
<td>菊地</td>
<td>医薬品の臨床開発とグローバル臨床試験</td>
<td>医薬品の古典的な治療法から ICH E5（R1）導入後のブリッジングスタディ、さらにグローバルスタディーに至る臨床開発の歴史と実際を学ぶ。</td>
</tr>
<tr>
<td>15</td>
<td>平澤・富岡・吉成</td>
<td>まとめ</td>
<td>SGDおよび発表</td>
</tr>
</tbody>
</table>

【成績評価方法】

筆記試験とレポートおよび出席状況を基に総合的に評価する。

【参考書】

「薬物代謝学」第3版 加藤隆一、山添康、横井穂編 東京化学同人
「臨床薬物動態学」改訂第4版 加藤隆一著 南江堂
「医薬品トキシコロジー」改訂第3版：佐藤哲男、仮名公夫、北田光一編 南江堂
画像診断薬物学（創薬科学科）
配当学年（セメスター）3年（6）
単位数　1
担当教員　岩田　錬、張　明栄
古本　祥三

【目的と概要】
医学画像診断に使用される放射性医薬品、特にポジトロン放出放射性薬剤（PET薬剤）について、その調製法から生体内動態を利用した画像診断原理に関して説明する。また、新薬開発や最近の分子イメージング研究においてもPET薬剤は重要な役割を担っており、本講義において、その現状と展望についても紹介する。

【学習の到達目標】
核医学における画像診断法について学び、生体機能と各種のイメージング剤の挙動との関係について学び、その原理を理解するとともに診断薬の作用機序について学習する。また、創薬研究との係わりに関しても知見を得る。

【授業内容】

<table>
<thead>
<tr>
<th>回目</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>岩田</td>
<td>概要・基礎</td>
<td>放射性核種の一般的標識合成法とイメージング装置（SPECTとPET装置）による画像化の原理について学ぶ。</td>
</tr>
<tr>
<td>2</td>
<td>岩田</td>
<td>腫瘍イメージング剤（I）</td>
<td>現在までに知られているブドウ糖、アミノ酸代謝に基づく腫瘍イメージング剤に学び、その集積原理と診断薬としての有効性について考える。</td>
</tr>
<tr>
<td>3</td>
<td>古本</td>
<td>腫瘍イメージング剤（II）</td>
<td>腫瘍に発現するレセプターを標的とする診断薬や放射線療法の有用性評価などに使用する診断薬など、最新の腫瘍イメージング剤について学ぶ。</td>
</tr>
<tr>
<td>4</td>
<td>張</td>
<td>神経伝達機能イメージング剤（I）</td>
<td>脳内の神経伝達関連酵素、受容体、トランスポーター等を標的とするイメージング剤について学ぶ。</td>
</tr>
<tr>
<td>5</td>
<td>古本</td>
<td>神経伝達機能イメージング剤（II）</td>
<td>アルツハイマー病、統合失調症等に関わる脳内受容体等のイメージング剤の開発及び応用について学ぶ。</td>
</tr>
<tr>
<td>6</td>
<td>張</td>
<td>PET薬剤の製造・品質管理</td>
<td>PET薬剤の製造・品質管理と臨床利用にあたって必要な安全性評価について学ぶ。</td>
</tr>
<tr>
<td>7</td>
<td>張</td>
<td>分子イメージングプローブ・マイクロドージング</td>
<td>マイクロドース臨床試験や早期探索臨床試験において、PETはどのように利用されるか、またPETは医薬品開発にどのような情報を与えられるかについて学ぶ。</td>
</tr>
</tbody>
</table>

【成績評価方法】
授業への出席とレポートにより評価する。

【教科書・参考書】
特定のものを指定しない。授業のごとに学習資料を配布する。
授業科目名：医薬統計学（薬学科）
配当学年（セメスター）：3年（6）
単位数：1

担当教員：松浦 正樹、中村 浩規、遠又 靖夫、山口 拓洋、黒川 修行、辻 一郎、佐藤 博

[目的と概要]
統計学は、様々な領域で客観的で正確な判断を行うために活用されており、医療の現場においても、医薬品・治療法の開発・評価など多くの領域で用いられている。しかしながら、その内容が十分に理解され適切に活用されているとは言えない例が多く見受けられる。統計学＝数学と受け止め、拒否反応を示す者も多い。本講義は、医薬品研究開発・臨床開発・薬剤業務における統計学・研究手法を中心に、実際に役立つ手法を身につけもらうことを目的とする。

[学習の到達目標]
・統計学が、何のために、どのように使われているか、理解できる。
・どのような統計手法を、どのような場合に用いたらよいか、理解できる。
・臨床研究をどのように評価するか、理解できる。

[授業内容]

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項 目</th>
<th>授 業 内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>松浦</td>
<td>薬剤業務の統計学</td>
<td>統計学が薬剤業務においてどのように用いられているか、実例を中心に理解する。</td>
</tr>
<tr>
<td>2</td>
<td>中村</td>
<td>統計学の医薬保健学への応用</td>
<td>統計学が医療系分野でどのように応用されているか疫学研究の考え方を例に理解する。</td>
</tr>
<tr>
<td>3</td>
<td>遠又</td>
<td>基礎統計学</td>
<td>医薬統計に用いる統計手法について理解する。</td>
</tr>
<tr>
<td>4</td>
<td>山口</td>
<td>医薬品開発と統計学（1）</td>
<td>医学研究において統計学がなぜ必要かを理解する。</td>
</tr>
<tr>
<td>5</td>
<td>山口</td>
<td>医薬品開発と統計学（2）</td>
<td>医薬品開発における統計学の役割について具体例を体験しながら理解する。</td>
</tr>
<tr>
<td>6</td>
<td>黒川</td>
<td>メタ・アナリシスの統計学</td>
<td>メタ・アナリシスの概念と統計手法について理解する。</td>
</tr>
<tr>
<td>7</td>
<td>辻</td>
<td>EBMの統計学</td>
<td>EBMの概念と統計手法について理解する。</td>
</tr>
<tr>
<td>8</td>
<td>佐藤</td>
<td>医薬統計学のまとめ</td>
<td>これまで学んだ統計学の内容についてミニワークショップ形式で意見交換・討論を行う。</td>
</tr>
</tbody>
</table>

— 82 —
[成績評価方法] レポートや出席状況などを基礎に評価する。

[参考書] 「バイオサイエンスの統計学」市原清志 著 南江堂
「一目でわかる医科統計学」吉田勝美 監訳 メディカル・サイエンス・インターナショナル
「道具としての統計学」奥田千恵子 著 金芳堂
「医学的研究のデザイン(第3版)」木原雅子、木原正博 訳 メディカル・サイエンス・インターナショナル
「医学研究における実用統計学」木船義久、佐久間昭 訳 サイエンティスト社
「臨床試験の進め方」大橋靖雄、荒川義弘 編 南江堂
「看護学生のための疫学・保健統計」浅野嘉延 著 南山堂
「薬剤疫学の基礎と実践」景山茂、久保田潔 編
「はじめてのメタアナリシス」野口善令 著 NPO法人健康医療評価研究機構
授業科目名
免疫学（薬学科） 配当学年（セメスター） 3年（6）
単位数 2
担当教員 矢野 環

[目的と概要]
免疫反応は病原微生物に対する防御機構として不可欠であるが、その本質は、自己、非自己の認識にある。現代免疫学は、無数の外来異物（非自己）と自己を識別する機構や、抗体の多様化の機構を解明し、現代の基礎生物学に大きな影響を与えた。本講義では、免疫担当細胞、抗体、補体など、免疫に関連する基本事項とともに、現代の免疫学が達成した成果を学習する。

[学習の到達目標]
・免疫応答の本質である自己と非自己の認識機構を説明できる。
・抗体分子およびT細胞受容体の多様性を生み出す機構を説明できる。
・抗体、補体、免疫細胞による生体防御機構を説明できる。
・免疫応答における細胞間ネットワークを説明できる。
・代表的な免疫疾患に関する基本的知識を習得する。

[授業内容]

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項 目</th>
<th>授 業 内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>矢野</td>
<td>免疫学の歴史</td>
<td>免疫学上の重要な発見を中心にその歴史を知り、免疫学が生命科学の発展に与えた影響を理解する。</td>
</tr>
<tr>
<td>2</td>
<td>矢野</td>
<td>自然免疫および適応免疫の原理</td>
<td>自然免疫と適応免疫がいかに機能しているかの概略を理解し、免疫系の全体像を得る。</td>
</tr>
<tr>
<td>3</td>
<td>矢野</td>
<td>抗体分子の構造と抗体遺伝子の再編</td>
<td>抗体の構造と機能、抗体遺伝子の再構成を中心に、抗体が無数の抗原に対応可能なメカニズムを理解する。</td>
</tr>
<tr>
<td>4</td>
<td>矢野</td>
<td>Tリンパ球に対する抗原提示</td>
<td>T細胞受容体の形成機構とT細胞の抗原認識における主要組織適合抗原の役割を理解する。</td>
</tr>
<tr>
<td>5</td>
<td>矢野</td>
<td>リンパ球の分化と選択</td>
<td>B細胞、T細胞の骨髄幹細胞から成熟リンパ球までの分化と未梢リンパ組織における成熟について理解する。</td>
</tr>
<tr>
<td>6</td>
<td>矢野</td>
<td>免疫受容体を介するシグナル伝達</td>
<td>免疫受容体の構造とシグナル伝達、およびサイトカインとそのシグナル伝達を理解する。</td>
</tr>
<tr>
<td>7</td>
<td>矢野</td>
<td>細胞性免疫</td>
<td>T細胞による抗原認識、およびエフェクターT細胞による細胞障害とマクロファージ活性化を理解する</td>
</tr>
<tr>
<td>8</td>
<td>矢野</td>
<td>体液性免疫応答</td>
<td>抗体の機能的多様化のためのクラススイッチ、記憶B細胞の生成に必要なB細胞とヘルパーT細胞との相互作用を理解する。</td>
</tr>
<tr>
<td>9</td>
<td>矢野</td>
<td>自然免疫</td>
<td>自然免疫の免疫系における重要性を理解し、病原体認識と病原体排除、さらに適応免疫の始動における仕組みを理解する。</td>
</tr>
<tr>
<td>10</td>
<td>矢野</td>
<td>補系とその活性化機構</td>
<td>異物排除における抗体と補体の役割について理解し、補系が生物進化上では、抗体系より古い免疫系であることを理解する。</td>
</tr>
</tbody>
</table>

— 84 —
11 矢野 粘膜免疫系 生体の「内なる外」を防御する粘膜免疫系の特徴と機能について理解する。
12 矢野 宿主防御機構の破綻 病原体による宿主の免疫回避と免疫不全症について理解する。
13 矢野 免疫系が関与する疾患 アレルギー等の疾患について、免疫系がどのように関与しているのかを理解する。
14 矢野 自己免疫 自己に対する免疫寛容とその破綻である自己免疫疾患について理解する。
15 矢野 免疫学的手法 抗原抗体反応、抗体を用いた様々な測定法、エフェクター細胞分離法等、免疫学に関連する手法を理解する。

[成績評価方法]
筆記試験および出席状況により評価する。

[参考書]
「免疫生物学—免疫系の正常と病理—」 Charles A. Janeway 他著 篠月健彦 監訳 南江堂

[その他]
必要に応じ、資料を配布する。
授業科目名 **公衆衛生学２**（薬学科） 配当学年（セメスター）3年（6）
単位数 2
担当教員 永沼 章、黃 基旭 高橋 勉

【目的と概要】
我々が日常的に摂取する食品中に含まれる添加物、微生物、化学物質の種類、性質などを学ぶと共に、これらが人間の健康に与える影響を理解する。

【学習の到達目標】
1. 食と健康について理解を深める。
2. 感染症法と感染症体験について理解する。
3. 食品の摂取を介した微生物や化学物質などによる健康障害の種類と原因、対策について理解する。
4. 健康に影響を与える食品中因子の種類、性質、作用機構、摂取経路などを理解する。
5. 化学物質の安全性評価の方法を理解する。

【授業内容】

<table>
<thead>
<tr>
<th>回数</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>黄</td>
<td>食品衛生学論</td>
<td>食品衛生行政の仕組みと法律、食中毒発生状況、食品中の危害因子などについて理解する。</td>
</tr>
<tr>
<td>2</td>
<td>黄</td>
<td>食と健康</td>
<td>医療費抑制法など、健康を考える社会的な意義および保健機能を持たせた新しい食品の形態などについて理解する。</td>
</tr>
<tr>
<td>3</td>
<td>黄</td>
<td>食品の安全性</td>
<td>多様化する食品汚染とこの状況に対応して食の安全性を確保するための基本的対策と一般的安全評価法の概念について理解する。</td>
</tr>
<tr>
<td>4</td>
<td>黄</td>
<td>経口感染症と食中毒</td>
<td>食中毒と経口感染症の違いおよびそれらの病原体の特性について理解する。</td>
</tr>
<tr>
<td>5</td>
<td>黄</td>
<td>微生物による食中毒</td>
<td>食中毒原因菌・ウィルスについて、原因生物の特性、分布、食中毒発生状況および中毒症状、毒素の性状と作用、食品衛生上の問題点および予防対策について理解する。</td>
</tr>
<tr>
<td>6</td>
<td>黄</td>
<td>自然毒による食中毒</td>
<td>植物性および動物性自然毒と潜在的な危険因子であるカビ毒について理解する。</td>
</tr>
<tr>
<td>7</td>
<td>黄</td>
<td>変異原・発がん物質</td>
<td>発がんのイニシエーションとプロモーション、がん遺伝子とがん抑制遺伝子、発がん物質の代謝活性化と活性本体について理解する。</td>
</tr>
</tbody>
</table>
8 食品の変質と保存
食品の安全性や栄養価を確保するために、食品変質の機構およびその予防法について理解する。

9 食品汚染物質：
無機物質
金属類など、食品中に残留する無機汚染物質の種類とその毒性について理解する。

10 食品汚染物質：
有機物質
農薬や難分解性物質など、食品中に残留する有機汚染物質の種類とその毒性について理解する。

11 残留農薬・飼料添加物
残留農薬（飼料添加物および動物用医薬品を含む）の種類、使用目的およびその安全性について理解する。

12 高橋
食品添加物
食品添加物の意義、種類、使用目的およびその安全性について理解する。

13 遺伝子組み換え作物の安全性評価
遺伝子組み換え作物の使用実態とその安全性を確保するための方法について理解する。

14 永沼
化学物質の安全性評価
化学物質の安全性確保に関する法律、毒性試験法、人間に対する安全性評価法などについて理解する。

15 総合討論
講義全体についてグループ討論を行い、理解を深める。

【成績評価方法】主に講義出席・参加態度、筆記試験を基盤に総合的に評価する。

【その他】講義内容のほとんどが薬剤師国家試験出題基準に含まれる。

【教科書】「食品衛生学」那須正夫、和田啓爾 編集、南江堂

【参考書】「衛生薬学－健康と環境－」永沼 幸、堀野誠一郎、平塚 明 編集、丸善
「必携・衛生試験法」日本薬学会 編集、金原出版
「国民衛生の動向」（財）厚生統計協会
「シンプル微生物学」東 匠伸、小熊憲二、尾田 博 編集、南江堂
授業科目名
感染症学（薬学科） 配当学年（セメスター） 3年（6）
単位数 2
担当教員 青木 淳賢、富岡 佳久
鈴木 直人、塚本 宏樹

【目的と概要】
感染症学では、ウイルスなどの病原微生物の分類や、構造、増殖機構などの基本的な知識を学ぶとともに、感染症の成因および病態を理解する。さらに、代表的な感染症の感染経路、治療法、薬物療法、予防法について理解し、その利点、問題点を把握する。

【学習の到達目標】
病原微生物に関する基本的知識を修得するとともに、主な感染症を列挙し、その病態と原因、感染経路、治療法、薬物療法、予防法を説明できる。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項 目</th>
<th>授 業 内 容</th>
</tr>
</thead>
</table>
| 1 | 青木 | 病原微生物概論(I) | ウイルス、微生物による感染症の歴史、人類との交わりを理解する。ウイルス粒子の基本構造とウイルスゲノムの種類について分類を理解する。
| 2 | 青木 | 病原微生物概論(II) | ウイルスの細胞への吸収・侵入から増殖、粒子形成・放出までを理解する。ウイルスゲノムの複製と遺伝子発現の機を理解する。感染の成立、感染様式、干渉様式、病原性、ウイルス受容体、ウイルスのトロポジズムについて理解する。
| 3 | 青木 | ウイルス感染症(I) | 様々なウイルスが引き起こす病態、感染様式、治療法などを理解する。
| 4 | 青木 | ウイルス感染症(II) | 様々なウイルスが引き起こす病態、感染様式、治療法などを理解する。
| 5 | 青木 | 微生物感染症(I) | 様々な微生物が引き起こす病態、感染様式、治療法などを理解する。
| 6 | 青木 | 微生物感染症(II) | 様々な微生物が引き起こす病態、感染様式、治療法などを理解する。
| 7 | 青木 | 感染症薬の副作用情報 | 感染症薬の副作用情報をどのように得てどのように使用するかを理解する。
| 8 | 青木 | 感染症研究の最先端(I) | 感染症研究を行っている研究者に最先端の感染症研究を紹介してもらうことにより、研究の手法、考え方を理解する。
| 9 | 青木 | 感染症研究の最先端(II) | 感染症研究を行っている研究者に最先端の感染症研究を紹介してもらうことにより、研究の手法、考え方を理解する。
| 10 | 富岡 | 感染症予防・対策(I) | 感染症アウトブレイクの管理について概説できる。滅菌法と消毒法の実際を理解し、具体的に説明できる。医療機器と感染
リスクとの関係を概説できる。

手指衛生を説明できる。個人用防護具の種類と使用上の注意を説明できる。咳エチケットを説明できる。医療廃棄物の取扱を説明できる。

市中感染・院内感染について、発生要因、感染経路、原因微生物、およびその防止対策を概説できる。感染症に対するスタンダード・プロシージョンを理解する。

抗菌薬、抗原虫薬・寄生虫薬、抗真菌薬、抗ウイルス薬を分類し、代表的な医薬品について作用機序および臨床応用を説明できる。抗菌薬使用のガイドラインを理解する。

主要な化学療法薬の耐性獲得機構を説明できる。主要な多剤耐性菌への対策を説明できる。主要な化学療法薬の主な副作用を列挙し、その症状を説明できる。

感染に対する生体の防御機構を概説し、感染症の治療薬・予防薬を開発する必要性を理解する。

【成績評価方法】
主に筆記試験を基礎に評価する。

【教科書】
わかる！身につく 病原体・感染・免疫 藤本秀士編 南山堂
授業科目名：病理学（薬学科）
配当学年（セメスター）：3年（6）
単位数：2
担当教員：笹野 公伸、三木 康宏、中村 保宏、遠藤 希之、高木 清司、武山 淳二、佐々木 優、柴原 裕紀子、McNamara Keely May

【目的と概要】
薬剤治療の対象となるさまざまな人体疾患の病態と治療を理解するうえで病理学の知識は欠かせないのである。薬剤の薬剤の毒性あるいは安全性を考慮するうえにおいても病理学、特に病理形態学の知識は必須である。本講義ではヒト疾患の基本的な概念を病理学的立場から理解する事とあわせて、上述のような病状と関連する視点からも種々の薬剤の治療対象の選択、効果、副作用、毒性、安全性などとの関連も基礎、臨床方の病理学を各々の専門家から講義を受ける。又希望者は冬期体寒中に長期で大学病院での実際の病理組織診断と病理学的見学を行う事が出来る。

【学習の到達目標】
薬学に必要な病理学の基本を修得する。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>笹野</td>
<td>総論（1）</td>
<td>乳癌他例的交差個々の患者における抗がん剤、ホルモン剤などを含めた薬剤の適応の決定にあたり病理学的果たす役割を理解し、tailored medicineの基盤となる病理組織診断学の理解。</td>
</tr>
<tr>
<td>2</td>
<td>笹野</td>
<td>総論（2）</td>
<td>日本人の死因の第１位は恶性腫瘍になってきており、薬学部学生にとっても癌／悪性腫瘍の基本的概念を知っておく事が極めて重要になっている。そこで本講義では悪性腫瘍／癌とは何かというところから始まり、種々の腫瘍に発症する実際の癌の例を通して“悪性”という概念の基本となっている癌の病理学について解説する。</td>
</tr>
<tr>
<td>3</td>
<td>三木</td>
<td>各論（1）</td>
<td>化学物質の毒性評価における病理学的性質の重要性が認められるため、毒性学と病理学の両方の特徴を重視した学問体系が構築されてきた。本講義では研究レベルでのデータを含めた毒性学と病理学について解説する。</td>
</tr>
<tr>
<td>4</td>
<td>三木</td>
<td>各論（2）</td>
<td>味噌の直接作用など、呼吸器は常に外界からの刺激にさらされるが、薬剤の副作用として呼吸器障害は致命的となることがある。肺の組織とその変化（癌、毒性）について解説する。</td>
</tr>
<tr>
<td>5-6</td>
<td>中村</td>
<td>各論（3）</td>
<td>薬物代謝動態などと密接に関連する内分泌－代謝、生殖の基礎的な病理を個々の臓器の実際の疾患を含めて理解する。あわせて内分泌学の概念を理解する。</td>
</tr>
</tbody>
</table>
遠藤 各論（4）
薬物の副作用として非常に重要な変化が生じる事がある肝臓及び腎臓の疾患の病理を具体的な症例を基に理解する。

高木 各論（5）
内分泌関連疾患の診断および治療における病理学的検査方法について解説する。また、ホルモン作用の多様性に関する分子メカニズムについて、研究データを用いて解説する。

武山 各論（6）
周産期の病理
胎盤について、その働きと主な疾患について解説する。また胎盤の異常が胎児に与える影響について最近の知見を含め解説する。

佐々木 各論（7）
口腔・唾液腺の病理学
口腔粘膜は、生体の防御バリアーとして、重要な役割をはたすとともに、多くの薬剤が、経口で投与される。口腔と唾液腺の病理学を、薬物治療の観点から解説する。

柴原 各論（8）
皮膚の病理
薬物代謝動態やその副作用と密接に関連する皮膚の、基礎的な病理を、基本的な皮膚の構造等に関する理解を深め、種々の疾患についての解説を行う。

McNamara 各論（9）
Intracrinoology in breast and prostate cancers
Intracrinoology refers to the ability of certain tissues to take steroid hormones from the circulation and then metabolise them in order to create tissue specific steroid profiles. These lectures will cover the background to intracrinoology and how this process can be altered in breast and prostate cancer cells in order to allow unconstrained growth. This field is of interest, not only because it offers a way to further understanding of cancer biology but also because there are a number of potential ways in which intracrinoology can be exploited for the benefit of the patients.

【成績評価方法】 筆記試験及び場合によってはレポート。

【教科書】 「シンプル病理学(改訂第4版)」笹野公伸・岡田保典・石倉浩 編集 南江堂
授業科目名（対象学科） 遺伝分子生物学（薬学科） 配当学年（セメスター）３年（6）
単位数 1
担当教員 稲田 利文

[目的と概要]
遺伝子が収納されている染色体の構造と機能、染色体異常など、マクロなレベルで遺伝や遺伝病を理解するとともに、遺伝子をコードする領域や、反復配列、偽遺伝子などが存在するヒトゲノムの構成を理解する。また、遺伝子の変異や修復機構を知るとともに遺伝子の変異をもとならいない遺伝（エピジェネティクス）について学ぶ。さらに、疾患に関与する遺伝子を見つけ出す方法を知り、いくつかの代表的な遺伝性疾患について、遺伝子の変異とその病態、治療法を学ぶ。また、様々な遺伝子発現の制御機構や、低分子 RNA による発現抑制機構を理解し、その疾患との関連と治療への応用について学ぶ。

[学習の達成目標]
ヒトの染色体の構造と機能を理解する。
遺伝子の変異や修復機構を理解する。
疾患遺伝子の同定法を理解する。
遺伝子の発現制御機構を理解する。
遺伝子の変異とその病態について知る。

[授業の内容]

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>稲田</td>
<td>遺伝の基礎</td>
<td>染色体の分配機構、減数分裂、伴性遺伝について理解する。</td>
</tr>
<tr>
<td>2</td>
<td>稲田</td>
<td>遺伝子の変異/遺伝子の修復</td>
<td>ヒトの突然変異の種類と誘発する原因を理解する。疾患を誘発する原因変異および遺伝子の傷害を修復する機構を理解する。</td>
</tr>
<tr>
<td>3</td>
<td>稲田</td>
<td>エピジェネティクス</td>
<td>遺伝子の変異をもとならない遺伝（エピジェネティクス）を理解する。</td>
</tr>
<tr>
<td>4</td>
<td>稲田</td>
<td>遺伝子発現と疾患</td>
<td>遺伝子発現の異常に起因する疾患について理解する。</td>
</tr>
</tbody>
</table>
| 5 | 稲田 | 遺伝子発現の変化と創薬 | 遺伝子発現の変化による創薬の現状を理解する。
翻訳の分子機構とその変化による創薬の現状を理解する。 |
| 6 | 稲田 | RNA 病とその治療法 | RNA 段階での遺伝性疾患について、遺伝子の変異とその変異に由来する病態を分子レベルで理解する。 |
| 7 | 稲田 | 遺伝子発現の品質管理機構 | 遺伝子発現の正確性を保証する品質管理機構を理解する。
品質管理機構の知見に基づいた疾患の治療法を分子レベルで理解する。 |
「成績評価方法」
1）出席点（約 15 ％）、2）講義後の筆記試験の成績（約 85％）
以上の成績から総合評価する。特に教科書は指定しない。講義の理解に必要なプリントを配布するとともに、
適宜 参考書などを紹介する。
授業科目名（対象学科） 生体有機物質化学（薬学科） 配当学年（セメスター） 3年（6）
単位数 2
担当教員 岩漸 好治、菊地 晴久

[目的と概要]
我々の生体を構成している糖・脂質・蛋白質（アミノ酸）・核酸（ヌクレオシド・ヌクレオチド）について学び、生命現象の化学的動動原理について理解するとともに、その化学構造解析の手法について学ぶ。

[学習の到達目標]
1. 糖類・脂質の化学構造と生理機能について理解する。
2. 蛋白質（アミノ酸）および核酸（ヌクレオシド・ヌクレオチド）の化学構造と生理機能について理解する。
3. NMR 分光法、赤外分光法、質量分析法を用いた生体機能分子の構造解析手法について学ぶ。

[授業内容]

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>菊 地</td>
<td>糖質の化学（1）</td>
<td>単糖・多糖類・配糖体について理解する。</td>
</tr>
<tr>
<td>2</td>
<td>菊 地</td>
<td>糖質の化学（2）</td>
<td>構造多糖類の生理機能について理解する。</td>
</tr>
<tr>
<td>3</td>
<td>菊 地</td>
<td>脂質の化学（1）</td>
<td>脂質の化学構造について理解する。</td>
</tr>
<tr>
<td>4</td>
<td>菊 地</td>
<td>脂質の化学（2）</td>
<td>脂質誘導体等の化学構造・生理機能について理解する。</td>
</tr>
<tr>
<td>5</td>
<td>岩 漸</td>
<td>アミノ酸・ペプチドの化学</td>
<td>アミノ酸の物性、ペプチドの化学構造および生理機能について理解する。</td>
</tr>
<tr>
<td>6</td>
<td>岩 漸</td>
<td>蛋白質の化学</td>
<td>蛋白質の二次構造・立体構造および生理機能発現機構について理解する。</td>
</tr>
<tr>
<td>7</td>
<td>岩 漸</td>
<td>核酸の化学（1）</td>
<td>核酸の化学構造およびDNA・RNA分子の基本的生理機能について理解する。</td>
</tr>
<tr>
<td>8</td>
<td>岩 漸</td>
<td>核酸の化学（2）</td>
<td>新規に発見されたRNAの生理機能について理解する。</td>
</tr>
<tr>
<td>9</td>
<td>菊 地</td>
<td>構造解析（1）</td>
<td>NMR分光法、赤外分光法、質量分析法の原理について学び、構造解析での利用法について理解する。</td>
</tr>
<tr>
<td>10</td>
<td>菊 地</td>
<td>構造解析（2）</td>
<td>同上</td>
</tr>
<tr>
<td>11</td>
<td>菊 地</td>
<td>構造解析（3）</td>
<td>同上</td>
</tr>
<tr>
<td>12</td>
<td>岩 漸</td>
<td>構造解析（4）</td>
<td>同上</td>
</tr>
</tbody>
</table>
[成績評価方法] 講義出席・態度、レポート、筆記試験に基づき総合的に評価する。

[教科書] 「生体分子の化学」相本三郎、赤路健一著、化学同人

[参考書] 「有機化合物のスペクトルによる同定法−MS, IR, NMR の併用 第7版」R. M. Silverstein, F. X. Webster, D. J. Kiemle 著 荒木善ら訳、東京化学同人 (2006); 「ヴォート 生化学 第3版 (上)」; D. Voet, J. G. Voet 著、田宮信雄ら訳、東京化学同人 (2005); 「スミス 基礎有機化学 第3版 (下)」 J. G. Smith 著、山本尚ら監訳、化学同人 (2012); 「ブルース 有機化学 第5版 (下)」 P. Y. Bruice 著、大船泰史ら訳、化学同人 (2009)
授業科目名 衛生化学２ 配当学年（セメスター） 4年（7）
単位数 2 担当教員 松沢厚

【目的と概要】
衛生化学は、人の健康の維持増進と疾病予防のため、環境ストレスや新興感染症、薬物など様々なストレスから人を守る方策を考える研究領域であり、重点的な研究テーマは時代のニーズに合わせて変化する。本講義では、特に、微生物による感染症の成立や予防法、免疫と食物アレルギー、また、がん、循環器疾患、糖尿病といった生活習慣病の疫学と予防について理解を深める。

【学習の到達目標】
1. 感染症の成立や予防法、免疫と食物アレルギーについて理解する。
2. 生活習慣病の疫学と予防について理解する。
3. 様々なストレスと疾患との関係を理解する。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>松沢</td>
<td>ストレス応答シグナルと衛生化学</td>
<td>物理化学的・生物学的ストレスなどの様々なストレスについて学び、ストレスと健康、ストレス応答シグナルと衛生化学の関わりについて理解を深める。</td>
</tr>
<tr>
<td>2</td>
<td>松沢</td>
<td>感染症の成立</td>
<td>感染症はどのようにして成立するのか、感染症の種類や感染経路、その要因について理解する。</td>
</tr>
<tr>
<td>3</td>
<td>松沢</td>
<td>感染症の予防</td>
<td>感染症の最近の動向を理解し、感染症を予防するための対策や関連法規、その変遷について学ぶ。</td>
</tr>
<tr>
<td>4</td>
<td>松沢</td>
<td>感染症の予防</td>
<td>感染症の予防に関わる予防接種の実際と現在の問題点について理解する。</td>
</tr>
<tr>
<td>5</td>
<td>松沢</td>
<td>病原体による毒性</td>
<td>病原体の種類・分類を学ぶと共に、それぞれの病原体固有の毒性について理解する。</td>
</tr>
<tr>
<td>6</td>
<td>松沢</td>
<td>病原体による毒性</td>
<td>病原体によって起こる食中毒の種類や要因について学習する。</td>
</tr>
<tr>
<td>7</td>
<td>松沢</td>
<td>免疫の仕組み</td>
<td>免疫の基本的な仕組みについて理解する。</td>
</tr>
<tr>
<td>8</td>
<td>松沢</td>
<td>免疫とアレルギー</td>
<td>免疫によって起こるアレルギーのメカニズムについて学び、特に食物アレルギーの原因を理解する。</td>
</tr>
<tr>
<td>9</td>
<td>松沢</td>
<td>母子保健</td>
<td>母子感染や新生児マスクリーニングについて理解する。</td>
</tr>
<tr>
<td>10</td>
<td>松沢</td>
<td>生活習慣病の成立</td>
<td>がん、循環器疾患、糖尿病といった様々な生活習慣病の種類や特徴を学び、その要因や疾患が生じるメカニズム、過去および最近の動向について理解する。</td>
</tr>
<tr>
<td>11</td>
<td>松沢</td>
<td>生活習慣病の疫学と予防</td>
<td>がんの疫学と予防について理解する。</td>
</tr>
</tbody>
</table>

— 96 —
<table>
<thead>
<tr>
<th>项目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>松沢</td>
</tr>
<tr>
<td>13</td>
<td>松沢</td>
</tr>
<tr>
<td>14</td>
<td>松沢</td>
</tr>
<tr>
<td>15</td>
<td>松沢</td>
</tr>
</tbody>
</table>

[成績評価方法]
講義への出席状況、筆記試験を基に総合的に評価する。

[その他]
講義内容のほとんどが薬剤師国家試験出題基準に含まれる。

[教科書] 「衛生薬学-健康と環境-」永沼 章、姬野誠一郎、平塚 明 編集、丸善
【目的と概要】
昨今の医療を取り巻く環境は、少子高齢化時代を迎え、急速な医療資源の減少に直面している。医療資源である医療費、特にその大きな比率を占める医薬品費の効率的運用は、国是とまでなっており、急性期医療の入院を対象に平成15年から診断群別包括払い制度（DPC：Diagnosis Procedure Combination）が大学病院などの特定機能病院に導入され、2011年3月17日現在では、約1449病院が対象であり、高度な薬物治療を行う急性期病床の半分以上を占めるまでになっている。しかし、患者取り扱いの医療事故に端を発した医療安全を含めた医療の質の向上をもたらす同時に、医療現場は求められている。医薬品においても例外ではなく、医薬品適正使用は勿論、医療安全、感染対策、抗がん剤ブートコールチェックを含めたハイリスク薬対策、治験、医療経営まで、広い対絆が必要不可欠となる。
現在、病院薬剤師が行っている基本的な業務である調剤、薬品管理等を紹介するとともに、薬剤管理指導業務（服薬指導を含む）などのファーマシューティカルケアに基づいた業務、また、2012年診療報酬改定により導入された「病棟薬剤業務実施加算」とその業務の概要、さらには発展的な臨床研究業務や病院経営を含む病院管理業務まで、大学病院薬剤部等の実例を通じて学習する。

【学習の到達目標】
・医薬品を取り巻く環境変化と薬剤師の役割の変遷を説明できる
・医薬品の適正使用に基づいた薬剤師の基本的な業務を理解できる
・チーム医療の変遷と薬剤師が求められる資質、技術および知識について理解できる
・病院における薬剤師の新しい役割について理解できる
・医薬を使用する上での医療倫理、医療保障制度、診療報酬体系を理解できる
・病院経営を含む病院管理業務における薬剤師の役割を理解できる

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>外山</td>
<td>病院における薬剤業務</td>
<td>薬剤師の基本的かつ重要業務である調剤について、医療環境の変化に伴う業務内容の変遷、IT化による変化と高度医療への対応について理解する。</td>
</tr>
<tr>
<td>4/8</td>
<td></td>
<td>（1）－調剤</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>外山</td>
<td>病院における薬剤業務</td>
<td>麻薬・向精神薬、および血液製剤を含めた医薬品の供給管理の重要性と、医薬品管理を薬剤師が行う意義について理解する。</td>
</tr>
<tr>
<td>4/15</td>
<td></td>
<td>（2）－医薬品管理</td>
<td></td>
</tr>
</tbody>
</table>
3 豊口 薬物血中モニタリング
4/22（TDM）
TDMは、薬物療法の有効性および安全性を向上させる手段となる。薬物体内動態に影響を与える薬剤、患者情報の収集、臨床的背景を検討し、薬物動態解析、薬物相互作用および投与設計について理解する。

4 佐藤 病院（薬局）経営学
5/13
急性期型病院は、DPC導入後、劇的に診療体制が変化し、それに伴い、医薬品費抑制が薬剤師に求められた。クリンカルパスの運用、ジェネリック医薬品対策、医薬品フォーミュラリー管理など、包括医療制度において必要な薬剤師の役割を理解する。

5 豊口 感染制御
5/20
院内感染は、病院にとって重大な問題であり、基礎疾患の重篤な患者においては、感染症治療が生命に直結する。院内感染防止対策の実践および抗菌療法におけるPK/PD理論に基づいた投与方法について理解する。

6 早狩 医療リスクマネジメントにおける薬剤師の役割
5/27
昨今、数多くの医療事故が報道されている。また、病院内ではさらに数多くのインシデント（医療事故ではない有害事象）が発生している。それらの中でも、薬に関する有害事象の占める割合は多い。これらの事象の改善に、薬剤師／薬剤部がどのように関与して行くかを理解する。また、病院内に設定された医薬品安全管理責任者の役割も理解する。

7 外山 病院における薬剤業務
6/3（3）－医薬品情報管理業務
より良い薬物治療を行うためには医薬品の適正使用に必要な情報が不可欠である。この医薬品情報（Drug Information）を広範囲に取り扱うのが、医薬品情報管理業務（以下DI業務）である。DI業務における情報の収集、整理、評価、保管、加工、提供等の内容およびそれらの業務遂行に必要な知識・技術的能力について理解する。

8 豊口 救急医療と薬物乱用
6/10
薬物中毒等の救急医療においては、医薬品および乱用薬物の情報提供、薬物の分析、血中濃度測定、解毒剤等の投与が必要とされる。また、薬物乱用防止に関しては、薬剤師による学校での啓蒙、生徒への啓蒙活動が求められている。これら中毒医療に関する薬剤師の役割を理解する。

9 外山 病院における薬剤業務
6/17（4）－院内製剤
高度医療、希少疾患において患者に恩恵を与えてきた院内製剤、特殊院内製剤について、医療制度的、経済的、倫理的問題点が存在することも含め理解する。

—99—
| 10 | 早狩 | 医療現場におけるサイエンスの心 | 医療の現場で感じた小さな疑問がやがて創薬に繋がるケースや、服薬指導における TDM 解析結果から処方内容の変更を論理的に説明したケースなどの事例を紹介し、薬剤師がサイエンティストでもある必要性を理解する。
| 11 | 外山 | 臨床試験と薬剤師 | 治験コーディネーター (CRC) 等として薬剤師が臨床試験に如何に関わっているかについて、ドラッグラグの解消、国際共同治験への対応等の問題点とともに理解する。
| 12 | 豊口 | チーム医療と薬剤師 | 各医療分野は、高度に発展し、薬剤師においても専門性を高めるために、専門・認定薬剤師制度が開始された。薬剤管理指導業務および病棟業務、ICT、NST、がん化学療法チーム、緩和医療チーム等の一員としての薬剤師の関わりを理解する。
| 13 | 外山 | 機械化や情報技術・分析技術の導入による薬剤関連業務の効率化・高度化 | 医療安全対策や業務の効率化のために、調剤監査システム、処方オーダーシステムの導入や、治験の電子化等が進められている。部署横断的に活動する薬剤師が、薬剤関連業務の機械化や情報技術・分析技術の導入に積極的に関与することで、医療の安全化、効率化に広く貢献できることを理解する。
| 14 | 島貫 | 薬剤経済学会アウトカム研究 | 薬剤経済学的手法の適用方法とアウトカム研究のデザイントと実施方法の基礎を理解する。機会費用の考え方、限界分析、費用-効益分析、費用-効果分析、費用最小化分析、判別分析を理解する。病院と薬局との薬剤連携を理解する。
| 15 | 直江 | 臨床倫理と薬剤業務 | 医療を進めていく際に、身についておかなければならない倫理的視点について概観し、薬剤業務における留意点を理解する。

【成績評価方法】
筆記試験により評価する。

【参考書】
・中島編、臨床調剤学改訂第3版、エルゼビアジャパン、東京 (2005)
・日本病院薬剤師会編、病院薬剤師業務マニュアル、エルゼビアジャパン、東京 (2004)
・日本病院薬剤師会編、薬剤師のための感染制御マニュアル、薬事日報社、東京 (2011)
・北田、森川、加藤、中山編、抗悪性腫瘍剤の院内取り扱い指針改訂版、抗がん剤調製マニュアル、じほう、東京 (2005)
・調剤指針、日本薬剤師会編、薬事日報社

— 100 —
薬物療法学１（薬学科）
配当学年（セメスター） 4年（7）
単位数 2
担当教員 富岡 佳久、杉立 収寛
鈴木 直人、塚本 宏樹

【目的と概要】
薬物療法学では、代表的な疾患の病態や症状の理解のもと、個々の患者情報と医薬品情報に基づいた薬の使い方と選び方に関する基本的知識を学び、患者 QOL と医薬品の適正使用の観点から薬物治療に貢献することを理解する。
薬物療法学１では、血液・造血器系の疾患、神経・筋の疾患、精神疾患、耳鼻咽喉の疾患、眼の疾患、感染症、悪性腫瘍について、各疾患の概要を学ぶとともに、患者の症状、検査所見から病因・病名を推定し、治療方針および処方を決定する方法を理解する。さらに個々の薬物を使用する上での注意点について学ぶ。授業は、講義とともに少人数グループによる調査、発表、討論を行う。

【学習の到達目標】
各患者の症状、検査所見から、治療方針を立案し、具体的な処方例を提示できるようになる。

【授業内容】

<table>
<thead>
<tr>
<th>回目</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>富岡</td>
<td>薬物療法学総論</td>
<td>治療とは何か、薬物治療と非薬物治療の位置づけ、薬剤師の役割を説明できる。 適切な治療薬の選択について、薬効薬理、薬物動態、薬物相互作用に基づいて説明できる。</td>
</tr>
<tr>
<td>2</td>
<td>富岡</td>
<td>血液・造血器系の疾患（I）</td>
<td>血液・造血器における代表的疾患を挙げることができる。貧血に対する治療薬、およびその使用上の注意について説明できる。</td>
</tr>
<tr>
<td>3</td>
<td>富岡</td>
<td>血液・造血器系の疾患（II）</td>
<td>白血病、悪性リンパ腫に対する治療薬、およびその使用上の注意について説明できる。</td>
</tr>
<tr>
<td>4</td>
<td>杉立</td>
<td>血液・造血器系の疾患（III）</td>
<td>播種性血管内凝固症候群（DIC）に対する治療薬、およびその使用上の注意について説明できる。血友病に対する治療薬、およびその使用上の注意について説明できる。紫斑病、白血球減少症、血栓・塞栓について薬物療法を概説できる。</td>
</tr>
<tr>
<td>5</td>
<td>富岡</td>
<td>耳鼻咽喉系の疾患</td>
<td>耳鼻咽喉に関する代表的疾患を挙げることができる。めまいに対する治療薬、およびその使用上の注意について説明できる。メニエール病、アレルギー性鼻炎、花粉症、副鼻腔炎、中耳炎について薬物療法を概説できる。</td>
</tr>
<tr>
<td>6</td>
<td>富岡</td>
<td>眼の疾患</td>
<td>眼に関する代表的疾患を挙げることができる。緒内障に対する治療薬、およびその使用上の注意について説明できる。白内障に対する治療薬、およびその使用上の注意について説明できる。結膜炎、網膜症について薬物療法を概説できる。</td>
</tr>
<tr>
<td>7</td>
<td>塚本</td>
<td>感染症</td>
<td>主な感染症を列挙し、その病態と原因を説明できる。抗菌薬、抗原虫・寄生虫薬、抗真菌薬、抗ウイルス薬、およびその使用上の注意について説明できる。</td>
</tr>
</tbody>
</table>

— 101 —
富岡 悪性腫瘍（Ⅰ） 肺がん、胃がん、大腸がん、乳がん、卵巢がんに対する治療薬、およびその使用上の注意について説明できる。

富岡 悪性腫瘍（Ⅱ） 抗悪性腫瘍薬による副作用への対策を説明できる。

富岡 悪性腫瘍（Ⅲ） がん化学療法中の支持療法を説明できる。

鈴木 神経・筋の疾患（Ⅰ） 神経・筋に関する代表的な疾患を挙げることができる。脳血管疾患に対する治療薬、およびその使用上の注意について説明できる。

鈴木 神経・筋の疾患（Ⅱ） てんかんに対する治療薬、およびその使用上の注意について説明できる。パーキンソン病に対する治療薬、およびその使用上の注意について説明できる。

鈴木 神経・筋の疾患（Ⅲ） アルツハイマー病、脳血管性痴呆に対する治療薬、およびその使用上の注意について説明できる。頭痛（偏頭痛、緊張性頭痛、群発頭痛）に対する治療薬、およびその使用上の注意について説明できる。重症筋無力症、筋炎、筋病、胃性けいれん、筋麻痺、一過性脳虚血発作、Guillain–Barre症候群について薬物療法を概説できる。

鈴木 精神疾患 代表的な精神疾患を挙げることができる。統合失調症に対する治療薬、およびその使用上の注意について説明できる。気分障害（うつ病、躁うつ病）に対する治療薬、およびその使用上の注意について説明できる。神経症、心身症、薬物依存症、アルコール依存症について薬物療法を概説できる。

鈴木 まとめ 薬物療法学1で取り上げた疾患に対する処方事例について、患者QOLや薬剤適正使用の観点から薬物療法を説明できる。

成績評価方法
講義への出席状況、筆記試験を基礎に総合的に評価する。

参考書 「ファーマコセラピー 病態生理からのアプローチ（上・下）」J.T. Dipiro 他 編、百瀬弥寿雄 訳（ブレーン出版）
「今日の治療薬 2014」浦部昌夫／島田和幸／川合真一 編（南江堂）
「薬物療法学」石崎高志、鎌崎哲也、望月真弓 編（南江堂）
「薬学生のための病態生理と薬物治療」、厚味・小野野・富岡・平野 著（メディカル・エス）
「薬物治療モニタリング ケースで学ぶ臨床思考プロセス」、岩澤真紀子編（南山堂）
授業科目名（対象学科） 醫療情報学（薬学科） 配当学年（セメスター） 4年（7）
単位数 2
担当教員 窪野 成康、島田 美樹、平塚 真弘、中川 直人、松浦 正樹、藤本 容子、田坂 穂久、佐藤真由美、赤坂 和俊、木製 重樹

[目的と概要]
医療情報には、1）疾病に関する医学的な知識や薬品に関する情報、2）診療に関する患者個人の情報、3）診療所、病院などの医療施設固有の情報がある。情報化社会である現在では、医療情報の果たす役割はきわめて重要であり、患者、医療スタッフ双方が適切に活用することにより、医療の質向上が期待できる。薬剤師が、それぞれの情報源から適切な形で情報を取り出し、加工して必要な受け手に提供することで患者毎に最適な薬物療法を実施し、患者のQOL向上が期待できる。講義では、様々な場面における薬剤業務を通じて、医療情報に関する基本の知識を習得し、それを活用するための方法や、院内のみならず地域の医療スタッフへの情報提供の仕組みについても学ぶ。

[学習の到達目標]
・薬品の開発から臨床使用までの過程で収集される医療情報について理解する。
・医療スタッフや患者への情報提供のために必要な医療情報の収集・加工・提供の方法を学び、薬物療法の最適化に向けた情報の活用法について理解する。
・医療施設固有の情報の見方と活用法について理解する。

[授業内容]

<table>
<thead>
<tr>
<th>回</th>
<th>日付</th>
<th>担当者</th>
<th>項 目</th>
<th>授 業 内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4/8</td>
<td>窪野</td>
<td>総論</td>
<td>医療の流れを理解し、その過程で発生する様々な医療情報の位置づけを学ぶ。</td>
</tr>
<tr>
<td>2</td>
<td>4/15</td>
<td>平塚</td>
<td>医薬品情報とは</td>
<td>医療における医薬品情報業務の位置づけと、その必要性を学ぶ。</td>
</tr>
<tr>
<td>3</td>
<td>4/22</td>
<td>平塚</td>
<td>医薬品情報の発生と伝達</td>
<td>医薬品の開発から市販後調査までの過程で収集される情報とその伝達のされ方、これらに関連する薬事制度を学ぶ。</td>
</tr>
<tr>
<td>4</td>
<td>5/13</td>
<td>平塚</td>
<td>薬品情報源の種類と特徴(1)</td>
<td>医薬品添付文書の法的な根拠を理解し、記載項目を確認するとともにそれらの見方・読み方を学ぶ。また、添付文書に使われる用語の意味を理解しながら、医薬品情報源の加工度とその使い方を学ぶ。</td>
</tr>
<tr>
<td>5</td>
<td>5/20</td>
<td>平塚</td>
<td>医薬品情報源の種類と特徴(2)</td>
<td>インタビューフォームの見方、読み方および利用法を理解する。また、その医薬品情報源における位置づけを理解しながら、医薬品情報源の加工度とその使い方を学ぶ。</td>
</tr>
<tr>
<td>6</td>
<td>5/27</td>
<td>平塚</td>
<td>医薬品の有効性に関する研究デザイン</td>
<td>臨床研究や疫学研究によって生み出される医薬品の有効性に関するデータを評価するための研究デザインを学ぶ。</td>
</tr>
<tr>
<td>7</td>
<td>6/3</td>
<td>中川</td>
<td>医薬品の適正使用に関する情報提供</td>
<td>患者、医療従事者などに提供すべき情報の違いを理解する。また、院内における主な能動的情報提供における医薬品情報管理や薬品安全性情報等の管理について学ぶ。</td>
</tr>
<tr>
<td>8</td>
<td>6/10</td>
<td>松浦</td>
<td>医療施設固有の情報と地域連携</td>
<td>医療施設固有の情報については、施設毎に発信している情報と診断を含め評価（DIC: Diagnosis Procedure Code）を扱う。</td>
</tr>
</tbody>
</table>

— 103 —
<table>
<thead>
<tr>
<th>日付</th>
<th>姓名</th>
<th>件名</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/17</td>
<td>藤本</td>
<td>診療録の書き方と読み方</td>
<td>診療録には、治療方針を決めるうえで重要になっている患者の病歴に関する情報が記載される。ここでは、診療録の記載のルールについて学ぶとともに、その読み方を理解する。また、院内がん登録についても学ぶ。</td>
</tr>
<tr>
<td>6/24</td>
<td>佐藤</td>
<td>処方箋録における医療情報の活用</td>
<td>薬剤師は、処方箋録において、薬歴情報や検査値データなどとの照合により生じた疑義を解決しなければ調剤を行うとならない。処方箋録において活用すべき患者情報、ならびに様々な医療情報を理解する。</td>
</tr>
<tr>
<td>7/1</td>
<td>田坂</td>
<td>病棟業務における医療情報の活用</td>
<td>入院時の持参薬情報や、病棟業務における処方箋、薬歴、検査値データ、電子カルテおよび病態などの情報の活用について、実例を通じて学ぶ。</td>
</tr>
<tr>
<td>7/8</td>
<td>赤坂</td>
<td>高度救命救急センターやICUにおける医療情報の活用</td>
<td>高度救命救急センターやICUにおける薬剤業務で必要な情報の収集と、医療スタッフへの提供について、実例を通じて学ぶ。また、一般病棟との情報源の違いについても合わせて理解する。</td>
</tr>
<tr>
<td>7/15</td>
<td>木皿</td>
<td>がん化学療法と地域連携</td>
<td>がん化学療法の効果的な管理が求められている。地域連携による安全で有効なのがん化学療法を実施するうえでかかりつけ薬局等に提供すべき治療内容や処方箋、検査値ならびに副作用などの情報について学ぶ。</td>
</tr>
<tr>
<td>7/22</td>
<td>島田</td>
<td>個別化医療の推進における医療情報の活用（1）</td>
<td>電子カルテ、診療録、患者からの聞き取り等の情報と、薬物の血中濃度や遺伝子解析結果を合わせた医療情報を活用した処方設計の実例を学ぶ。</td>
</tr>
<tr>
<td>8/1</td>
<td>眞野</td>
<td>個別化医療の推進における医療情報の活用（2）</td>
<td>電子カルテ、診療録、患者からの聞き取り等の情報と、薬物の血中濃度や遺伝子解析結果を合わせた医療情報を活用した処方設計の実例を学ぶ。</td>
</tr>
</tbody>
</table>

【成績評価方法】筆記試験および出席状況により評価する。
【参考書】プリント等を配布予定。
授業科目名 | 漢方治療学（薬学科） | 配当学年（セメスター）：4年（7）
| | | 単位数：2
| | | 担当教員：新井 信

【目的と概要】
漢方は西洋医学とは異なる体系を持つもう一つの医学であり、日本の伝統医学である。漢方の基礎理論と特性および副作用などを理解し、薬剤師として臨床現場で適切に応用できる能力を身につけることを目的とする。

【学習の到達目標】
1. 東洋医学と西洋医学の基本的概念の違いを説明できる。
2. 漢方と東洋医学（中医学も含む）、相補代替医療（CAM）、民間療法の違いを説明できる。
3. 漢方の基本的概念（陰陽、虚実、寒熱、表裏、気血水、六病位、五臓）を概説できる。
4. 「証」の概念を理解し、随証治療の基本を実践できる。
5. 漢方の診断方法（望診、聞診、問診、切診）を知る。
6. 代表的な疾患について、使用する主な漢方薬とその鑑別処方を列挙することができる。
7. 漢方薬の主な副作用および禁忌事項について説明できる。

【授業内容】
<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>新 井</td>
<td>漢方概論</td>
<td>漢方の成り立ち、歴史を知り、基本的概念や薬物の特性など、西洋医学との違いを理解する。さらに、漢方治療の適応と不適応、現代医学における漢方の位置づけと役割などについて学ぶ。</td>
</tr>
<tr>
<td>2</td>
<td>新 井</td>
<td>漢方基礎理論Ⅰ</td>
<td>漢方の重要な基礎理論である陰陽、虚実について理解し、臨床的に説明できるようにする。</td>
</tr>
<tr>
<td>3</td>
<td>新 井</td>
<td>漢方基礎理論Ⅱ</td>
<td>寒熱、表裏、気血水、六病位、五臓について理解し、臨床的に説明できるようにする。</td>
</tr>
<tr>
<td>4</td>
<td>新 井</td>
<td>漢方臨床総論</td>
<td>随証治療などの臨床における漢方薬のさまざまな運用方法を知る。さらに臨床症例に対する漢方的なproblem listの作り方を学ぶ。</td>
</tr>
<tr>
<td>5</td>
<td>新 井</td>
<td>漢方製剤実習</td>
<td>臨床で用いられる煎じ薬、エキス剤、散剤などを調製し味わうことで漢方薬に親しむ。さらに臨床で必要とされている服薬方法などを体験して漢方製剤への理解を深める。</td>
</tr>
<tr>
<td>6</td>
<td>新 井</td>
<td>漢方臨床各論Ⅰ／呼吸器疾患</td>
<td>呼吸器疾患の漢方治療について理解し、演習を通して適切な処方を理解できるようにする。</td>
</tr>
<tr>
<td>7</td>
<td>新 井</td>
<td>漢方臨床各論Ⅱ／上部消化管疾患</td>
<td>上部消化管疾患の漢方治療について理解し、演習を通じて適切な処方を理解できるようにする。</td>
</tr>
</tbody>
</table>
8 新 井 漢方臨床各論Ⅲ／下部消化管疾患 下部消化管疾患の漢方治療について理解し、演習を通して適切な処方を理解できるようにする。

9 新 井 漢方臨床各論Ⅳ／婦人科疾患 婦人科疾患の漢方治療について理解し、演習を通して適切な処方を理解できるようにする。

10 新 井 漢方臨床各論Ⅴ／高齢者疾患・疼痛性疾患・不定愁訴 高齢者疾患、疼痛性疾患、不定愁訴の漢方治療について理解し、演習を通じて適切な処方を理解できるようにする。

11 新 井 臨床漢方薬理学 漢方薬が働くメカニズムを血清薬理学の立場から学び、説明できるようにする。

12 新 井 副作用・服薬指導 漢方薬の副作用を理解習得し、臨床で適切な服薬指導ができるようにする。

13 新 井 漢方処方演習(1) 患者に対する適切な処方についての演習を小人数グループで行い、実践的な能力を身につける。

14 新 井 漢方処方演習(2) 漢方処方演習から得た成果をワークショップ形式で議論し、随証治療に対する理解を深める。

15 新 井 特別講演／臨床推論を用いた漢方教育 漢方治療の本質である随証治療を大学で教育するには、従来の従事制度的な教育方法は適さない。臨床推論は西洋医学の診断手法であり、本学ではこの手法を用いた随証治療教育を行っている。他学では行っていない本教育法の成果と展望から、教育目標達成のための新たな教育法を開発する必要性を学ぶ。

【成績評価方法】
主に講義出席・参加態度、レポートを基盤に総合的に評価する。

【テキスト】講義時に配布する。

【参考書】「症例でわかる漢方薬入門」新井信、日中出版
「学生のための漢方医学テキスト」（社）日本東洋医学会学術教育委員会 編集、南江堂
「専門医のための漢方医学テキスト」（社）日本東洋医学会学術教育委員会 編集、南江堂
「漢方診療医典」大塚敬節、南山堂
「症候による漢方治療の実際」大塚敬節、南山堂
「臨床応用 漢方薬方解説」矢数道明、創元社
【目的と概要】
近年医薬品の種類はバイオ医薬品の開発をはじめとして多様化している。本講義においては、創薬への応用を目的として薬学的立場からの概説に加え、医学的立場からの薬物療法につき各専門家が概説する。以下の項目について学習する。

【学習の到達目標】
病態を理解し、病態の理解に基づく薬物療法の在り方を考察する。更に最新の疾患診断、分析法を学び、今後自らが目指す指導的立場の薬剤師としての役割を自覚し、将来の臨床薬学の担い手としての基本を学ぶ。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>佐藤</td>
<td>薬物療法学概論・腎不全の病態と治療</td>
<td>高齢化社会の到来とともに潜在的な腎機能障害患者が増加しており、薬剤の使い方にも注意が必要となっている。症例を呈示しながら、腎不全の原因・病態と、その薬物療法を学ぶ。</td>
</tr>
<tr>
<td>2</td>
<td>佐藤</td>
<td>腎炎・ネフローゼ症候群の治療</td>
<td>腎疾患の中で頻度の高い腎炎・ネフローゼ症候群・糖尿病性腎症について、その薬物療法の実際を学ぶ。</td>
</tr>
<tr>
<td>3</td>
<td>柳澤</td>
<td>循環器系治療薬（虚血性心疾患を中心に）</td>
<td>血液循環は巧妙な仕組みによって維持されている。循環器病には、狭心症、心筋梗塞、ショック、高血圧、心不全、不整脈などが含まれる。これらの疾患はきわめて頻度が高く、適切な治療をしないと患者の生命および予後は重大な結果を迎える。そこで、どの分野であれ医療人は循環器系治療薬を習得することが必要となる。特に虚血性心疾患の薬物治療を説明し、さらに循環器病治療薬などの新薬開発の過程も理解する。</td>
</tr>
<tr>
<td>4</td>
<td>柳澤</td>
<td>創薬科学（分子標的薬をめざして）</td>
<td>内分泌学は、生体のホメオスタシス維持の理解に重要な分野である。本講義では、視床下部・下垂体、甲状腺・副甲状腺、腎臓といった従来の内分泌臓器に加えて、脂質代謝、腎臓といった新しい内分泌臓器も含めて、病態生理、疾患治療に関して概説する。</td>
</tr>
<tr>
<td>5</td>
<td>菅原</td>
<td>内分泌学概論・各論</td>
<td>多くの病態にあたり、感染因子ブリオンの除去は最も大切な問題になりつつある。どのようにすればブリオン感染の危険性を払拭できるのか、ブリオン病を学びながら考える。</td>
</tr>
<tr>
<td>6</td>
<td>北本</td>
<td>ブリオン病の概念と治療</td>
<td>薬物療法は、生体のホメオスタシス維持の理解に重要な分野である。本講義では、視床下部・下垂体、甲状腺・副甲状腺、腎臓といった従来の内分泌臓器に加えて、脂質代謝、腎臓といった新しい内分泌臓器も含めて、病態生理、疾患治療に関して概説する。</td>
</tr>
</tbody>
</table>

— 107 —
<table>
<thead>
<tr>
<th>番号</th>
<th>順位</th>
<th>担当者</th>
<th>項目</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>藤原(一)</td>
<td>神経疾患の病態と治療</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>谷内</td>
<td>臨床薬理学概論</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>相場</td>
<td>皮膚疾患の臨床と外用治療</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>下平</td>
<td>癌化学療法概論・各論</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>高橋</td>
<td>高血圧・メタボリックシンドロームの病態と治療</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>藤原(兼)</td>
<td>骨代謝と薬物療法</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>下川</td>
<td>循環器病概論・各論</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>山岸</td>
<td>電解質異常と薬物療法</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>福士</td>
<td>心身医学</td>
<td></td>
</tr>
</tbody>
</table>

脳神経系は人間存在の本質に関与する重要機器であり、その機能は密に多様である。しかし、その生理および病理は依然として多くの謎に包まれている。本講義では、神経内科で取り扱う神経疾患の概要を紹介し、その診断過程、病態解析、治療の現状と今後の展望を概説する。

今日の医療において薬物治療の進歩はめざましく薬物治療は社会に多大な貢献をしている。しかし、いかなる医薬品もヒトの臨床試験を実施することなく開発されたものではない。ヒトの臨床試験を行ううえで「倫理性」は欠くことのできないものである。

医薬品の開発における臨床試験に関する基本的事項である1) ヘルシンキ宣言と厚労省倫理指針、2) GCP、3) IRB、4) インフォームド・コンセント、5) 治験管理センター、6) CRC、7) 治験と臨床研究の違い、について理解する。

皮膚の構造と機能、また、その異常で起きる皮膚疾患の臨床的な特徴、病因について学ぶ。ついで、それらに対する治験法について、外用剤を中心に理解する。

1. 癌の性別、特性
2. 癌の進展と転移
3. 癌の化学療法と最近の進歩
4. 乳がんの遺伝子診断と治療

高血圧関連臓器のメタボリックシンドロームの病態における役割を理解し、メタボリックシンドロームの治療について学習する。

小児の身体の成長には、骨代謝は非常に重要である。本講義では、骨代謝と骨系疾患について理解し、骨粗鬆症の薬物療法について学ぶ。

心血管系は血液を運ぶ機器として生命の根幹を支えている。

超高齢化社会に突入したわが国においては、今後、循環器疾患の重要性がますます高まる。循環器疾患の概要について理解した後、特に今後重要になる虚血性心疾患や心不全について理解する。

電解質異常の病態と薬物療法、あるいは薬物療法による電解質異常について、実際の症例を通じて実践的に理解する。

心身症の概念とその代表的なストレス関連疾患の病態を学び、心身医学的治療における薬物療法の役割について理解する。
[成績評価方法]

レポートを基礎に評価する。

[教科書・参考書]

柳澤：「新薬理学入門（第3版）」柳澤輝行編著、谷内一彦/布木和夫/著、南山堂（2008）
「Goodman & Gilman’s The Pharmacological Basis of Therapeutics, 12thEd.」 Laurence L. Brunton, McGraw-Hill（2011）
東北大学機関リポジトリ TOUR，検索「柳澤輝行」
谷内：「臨床薬理学」日本臨床薬理学会（編） 医学書院
「ローレンス臨床薬理学」大橋京一、小林真一、橋本敬太郎（監訳） 西村書店
「IRB ハンドブック」ロバート・J・アムダー（編著） 中山書店
「今日の治療薬」浦部晶夫、島田和幸、川合真一（編集）南江堂
「今日の治療指針」山口徹（監修、編集） 医学書院
「治療薬マニュアル」高久史啓、矢崎義雄（監修） 医学書院
授業科目名（対象学科）
臨床薬剤学（薬学科）
配当学年（セメスター）４年（7）
単位数 2
担当教員 寺崎 智也、立川 正憲
上原 朋子

[目的と概要]
臨床薬物療法における投与設計において薬物の体内動態や薬物相互作用を理解し、理論的な理解の元に適切な投与量と投与間隔を設定することは非常に重要である。臨床薬剤学では、薬剤学１と薬剤学２で講義した基礎的知識を踏まえて、特に、臨床における薬剤学の応用について理解するとともに、演習によって、臨床の現場において重要なプレゼンテーションとコミュニケーション能力を身につけることを目的とする。

[学習の到達目標]
・ 2－コンパートメント理論を理解し、臨床における応用を説明できるようになる。
・ 薬物動力学を理解し、臨床における応用を説明できるようになる。
・ 臨床薬物設計理論の臨床における応用を説明できるようになる。

[授業内容]

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項 目</th>
<th>授 業 内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>立川</td>
<td>コンパートメント理論の臨床への応用</td>
<td>臨床におけるコンパートメント理論として重要な2－コンパートメント理論について臨床における応用を含めて理解する。</td>
</tr>
<tr>
<td>2</td>
<td>立川</td>
<td>薬動力学の基礎</td>
<td>薬物の血中濃度と効果の関係を定量的に解析する薬動力学（ファーマコダイナミックス/PD）の基礎を理解する。</td>
</tr>
<tr>
<td>3</td>
<td>立川</td>
<td>薬動力学の応用</td>
<td>薬動力学の臨床への応用について理解する。</td>
</tr>
<tr>
<td>4</td>
<td>寺崎</td>
<td>臨床薬物設計理論の応用１</td>
<td>臨床における薬物相互作用の機構と速度論的解析について理解する。</td>
</tr>
<tr>
<td>5</td>
<td>寺崎</td>
<td>臨床薬物設計理論の応用２</td>
<td>臨床における個人差や病態における変動についてその機構と速度論的解析について理解する。</td>
</tr>
<tr>
<td>6</td>
<td>寺崎</td>
<td>臨床薬物設計理論の応用３</td>
<td>臨床における薬物投与設計とその分子基盤について理解する。</td>
</tr>
<tr>
<td>7</td>
<td>立川</td>
<td>PK演習1</td>
<td>コンピュータを用いて薬物速度論解析の演習を行い、基礎的なパラメータ解析法を理解する。</td>
</tr>
<tr>
<td>8</td>
<td>立川</td>
<td>PK演習2</td>
<td>コンピュータを用いて薬物速度論解析の演習を行い、AUC算出や投与経路依存性について理解する</td>
</tr>
<tr>
<td>9</td>
<td>立川</td>
<td>PK演習3</td>
<td>コンピュータを用いて薬物速度論解析の演習を行い、パラメータ変動の影響や経口投与の解析について理解する</td>
</tr>
<tr>
<td>10</td>
<td>立川</td>
<td>速度論演習1</td>
<td>薬物速度論を中心として計算課題の演習を行い、臨床における利用法を理解する。</td>
</tr>
</tbody>
</table>

—110—
11 立川 速度論演習2 薬物速度論を中心として計算課題の演習を行い、臨床における利用法を理解する。

12 寺崎、上塚 臨床薬剤学演習1 臨床における薬物投与の実例に基づいた課題の演習を行い、臨床薬剤学の理解を深める。

13 寺崎、上塚 臨床薬剤学演習2 臨床における投与設計の実例に基づいた課題の演習を行い、臨床薬剤学の理解を深める。

14 寺崎、上塚 臨床薬剤学演習3 臨床における実例に基づいた課題の演習を行い、プレゼンテーションを行うことによってコミュニケーション能力を上達させる。

15 寺崎、立川 発展課題演習 小グループによる臨床薬剤学に関わる課題を設定し、プレゼンテーションを行い、コミュニケーション能力を上達させる。

【成績評価方法】
出席状況、授業への積極的な参加、レポート、筆記試験の成績により総合的に評価する。

【参考書】 エピソード薬物動態学—薬物動態学の解明、京都薬川書店（2012）
「わかりやすい生物薬剤学 第4版」辻 彰 編、薬川書店（2008）
「Clinical Pharmacokinetics and Pharmacodynamics: concepts and applications Fourth Edition」Malcolm Rowland and Thomas N. Tozer 著、Lippincott Williams and Wilkins（2009）
「臨床薬物動態学 第4版」加藤隆一著、南江堂（2009）
授業科目名（対象学科） 処方箋解析学（薬学科） 配当学年（セメスター） 4年（7）
単位数 2
担当教員 村井 ユリ子

[目的と概要]
処方箋解析は、処方箋鑑査や疑義照会、患者への服薬説明などの患者の薬物療法への薬学的アプローチには必須の過程である。より適正な薬物療法を構築していくことができるように、処方事例をもとに処方箋の読み方や考え方を理解する。また Problem Based Learning (PBL) 方式により、処方箋解析を通じて自らの課題を見出し、それを解決する力を身につける。

[学習の到達目標]
1. 医療および薬剤師の業務における処方箋解析の位置付けや意義を説明できる。
2. 処方および処方箋の構成要素について説明できる。
3. 代表的な処方事例について、種々の情報をもとに医師の処方意図を推察できる。
4. 代表的な処方事例について、より適正な処方を、根拠と共に提示できる。
5. 代表的な処方事例について、服薬後に観察すべき主な項目を想起できる。

[授業内容]

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>村井</td>
<td>処方箋概論</td>
<td>処方箋に関連する法や規則、処方の成り立ち、薬剤師にとって処方箋解析の位置付けや意義について理解する。</td>
</tr>
<tr>
<td>2</td>
<td>（5/28）</td>
<td>処方事例解析入門</td>
<td>処方事例に合った医薬品情報および患者情報の利用法を学ぶ。また、自己学習ならびにグループワークの進め方、ポートフォリオについて理解する。</td>
</tr>
<tr>
<td>3</td>
<td>村井</td>
<td>基本事例解析（1）</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>（6/4）</td>
<td>基本事例解析（2）</td>
<td>授業2回ずつを単位として、代表的な疾患に対する処方事例を取り上げ、以下の過程を通じて処方箋解析を学ぶ：</td>
</tr>
<tr>
<td>5</td>
<td>村井</td>
<td>基本事例解析（3）</td>
<td>①処方薬に関わる情報を収集し、処方の成り立ちを考える。</td>
</tr>
<tr>
<td>6</td>
<td>（6/11）</td>
<td>基本事例解析（4）</td>
<td>②医師の処方意図を推察し、副作用や相互作用等の観点から、薬剤の選択、投与量の設定等について疑義解釈を明らかにする。</td>
</tr>
<tr>
<td>7</td>
<td>村井</td>
<td>基本事例解析（5）</td>
<td>③処方箋上の課題と考え得る解決法を列挙し、その中からより適正な処方を、根拠と共に提示する。</td>
</tr>
<tr>
<td>8</td>
<td>（6/18）</td>
<td>基本事例解析（6）</td>
<td>④服薬後の主なモニター項目を考察する。</td>
</tr>
<tr>
<td>9</td>
<td>村井</td>
<td>基本事例解析（7）</td>
<td>以上をグループ毎に検討して発表し、全体で討論する。</td>
</tr>
<tr>
<td>10</td>
<td>（7/2）</td>
<td>基本事例解析（8）</td>
<td>薬物療法学1と連携して、がんの症例を取り上げ、処方箋解析を行う。</td>
</tr>
<tr>
<td>11</td>
<td>村井</td>
<td>基本事例解析（9）</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>（7/9）</td>
<td>基本事例解析（10）</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>村井</td>
<td>基本事例解析（11）</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>（7/16）</td>
<td>基本事例解析（12）</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>村井</td>
<td>応用事例解析</td>
<td></td>
</tr>
</tbody>
</table>
[成績評価方法]
出席（小テスト：70 ％）、参加態度（5 ％）, カードフォリオ（25 ％）をもとに評価する。

[参考書]
・『第十三改訂調剤指針』日本薬剤師会編、薬事日報社（2011）
・スタンダード薬学シリーズ 10『実務実習事前学習』日本薬学会編、東京化学同人（2006）
・『図解 医薬品情報学 第3版』折井孝男編、南山堂（2014）
・スタンダード薬学シリーズ 6『薬と疾病 I～III 第2版』日本薬学会編、東京化学同人（2012）
・『今日の治療指針 2014』医学書院（2014）

[備考]
・この授業は、実務実習モデル・コアカリキュラムの D-I 実務実習事前学習、薬学教育コアカリキュラムの C13 : 薬の効くプロセス、 C14 : 薬物治療、 C15 : 薬物治療に役立つ情報などに関わる内容である。
・適宜、C102 教室（情報教育室）でインターネット上の各種情報源も利用しながら授業を進める。
授業科目名（対象学科） 薬物療法学 2（薬学科） 配当学年（セメスター） 4年（8）
単位数 2
担当教員 平澤 典保

【目的と概要】
薬物療法学 2では骨・関節疾患、皮膚疾患、アレルギー・免疫疾患、呼吸器疾患について、各疾患の概要を学ぶとともに、患者の症状、検査所見から病因・病名を推定し、治療方針および処方を決定する方法を理解する。さらに個々の薬物を使用する上での注意点について学ぶ。授業は、講義とともに少人数グループによる調査、発表、討論を行う。

【学習の到達目標】
各患者の症状、検査所見から、治療方針を立案し、具体的な処方例を提示できるようになる。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項 目</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>平澤</td>
<td>骨・関節疾患（I） 骨粗鬆症、慢性関節リウマチなどの病態について学ぶ。</td>
</tr>
<tr>
<td>2</td>
<td>平澤</td>
<td>骨・関節疾患（II） 骨粗鬆症、慢性関節リウマチ患者の症例をもとに、治療方針の立案、処方設計、使用する薬物の注意点を学ぶ。</td>
</tr>
<tr>
<td>3</td>
<td>平澤</td>
<td>皮膚疾患（I） アトピー性皮膚炎、乾燥性皮膚炎などの病態について学ぶ。</td>
</tr>
<tr>
<td>4</td>
<td>平澤</td>
<td>皮膚疾患（II） アトピー性皮膚炎、乾燥性皮膚炎の症例をもとに、治療方針の立案、処方設計、使用する薬物の注意点を学ぶ。</td>
</tr>
<tr>
<td>5</td>
<td>平澤</td>
<td>アレルギー疾患（I） アナフィラキシー・アレルギー性結膜炎、アレルギー性鼻炎などの病態について学ぶ。</td>
</tr>
<tr>
<td>6</td>
<td>平澤</td>
<td>アレルギー疾患（II） アナフィラキシー・アレルギー性結膜炎、アレルギー性鼻炎の症例をもとに、治療方針の立案、処方設計、使用する薬物の注意点を学ぶ。</td>
</tr>
<tr>
<td>7</td>
<td>平澤</td>
<td>免疫疾患（I） 全身性エリテマトーデスなどの病態について学ぶ。</td>
</tr>
<tr>
<td>8</td>
<td>平澤</td>
<td>免疫疾患（II） 全身性エリテマトーデスの症例をもとに、治療方針の立案、処方設計、使用する薬物の注意点を学ぶ。</td>
</tr>
<tr>
<td>9</td>
<td>平澤</td>
<td>臓器移植（I） 臓器移植の病態・問題点について学ぶ。</td>
</tr>
<tr>
<td>10</td>
<td>平澤</td>
<td>臓器移植（II） 臓器移植の症例をもとに、治療方針の立案、処方設計、使用する薬物の注意点を学ぶ。</td>
</tr>
<tr>
<td>11</td>
<td>平澤</td>
<td>呼吸器疾患（I） 気管支喘息、肺気腫などの病態について学ぶ。</td>
</tr>
<tr>
<td>12</td>
<td>平澤</td>
<td>呼吸器疾患（II） 気管支喘息、肺気腫の症例をもとに、治療方針の立案、処方設計、使用する薬物の注意点を学ぶ。</td>
</tr>
</tbody>
</table>
13. 平澤
呼吸器疾患（Ⅲ）
上気道炎、肺炎、慢性閉塞性肺疾患などの病態について学ぶ。

14. 平澤
呼吸器疾患（Ⅳ）
上気道炎、肺炎、慢性閉塞性肺疾患の症例をもとに、治療方針の立案、処方設計、使用する薬物の注意点を学ぶ。

[成績評価方法]
出席状況と筆記試験を基礎に評価する。

[参考書]「ファーマコセラピー 病態生理からのアプローチ（上・下）」J.T. Dripiro 他 編、
百瀬弥寿徳訳（ブレーン出版）
「今日の治療薬 2014」水島裕 編（南江堂）
「薬物療法学」石崎高志、鎌沢哲也、望月真弓 編（南江堂）
授業科目名（対象学科）　薬物療法学 3（薬学科）　配当学年（セメスター）　4年（8）
単位数　　2
担当教員　佐藤　博、高橋　信行

[目的と概要]
薬物療法学 3 では心臓・血管系疾患、腎・泌尿器系疾患、消化器系疾患、内分泌・代謝疾患について、各疾患の概要を学ぶとともに、患者の症状、検査所見から病因・病名を推定し、治療方針および処方を決定する方法を理解する。また、使用される個々の薬物の目的、検査、方法、使用量、期待される効果、副作用等を学ぶ。授業は、講義とともに少人数グループによる調査、発表、討論を行う。

[学習の到達目標]
各患者の症状、検査所見から、治療方針を立案し、具体的な処方例を提示できるようになる。

[授業内容]

<table>
<thead>
<tr>
<th>回目</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>高橋</td>
<td>心・血管系疾患（I）</td>
<td>虚血性心疾患、不整脈などの病態について学ぶ。</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>虚血性心疾患、不整脈患者の症例をもとに、治療方針の立案、処方設計、使用する薬物の注意点を学ぶ。</td>
</tr>
<tr>
<td>3</td>
<td>高橋</td>
<td>心・血管系疾患（II）</td>
<td>高血圧症、心不全などの病態について学ぶ。</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>高血圧症、心不全などの症例をもとに、治療方針の立案、処方設計、使用する薬物の注意点を学ぶ。</td>
</tr>
<tr>
<td>5</td>
<td>高橋</td>
<td>腎・泌尿器系疾患</td>
<td>腎炎、ネフローゼ症候群、前立腺肥大などの病態について学ぶ。</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>腎炎、ネフローゼ症候群、前立腺肥大などの症例をもとに、治療方針の立案、処方設計、使用する薬物の注意点を学ぶ。</td>
</tr>
<tr>
<td>7</td>
<td>高橋</td>
<td>内分泌・代謝疾患</td>
<td>内分泌疾患、糖尿病などの病態について学ぶ。</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td>内分泌疾患、糖尿病などの症例をもとに、治療方針の立案、処方設計、使用する薬物の注意点を学ぶ。</td>
</tr>
<tr>
<td>9</td>
<td>佐藤</td>
<td>消化器系疾患（I）</td>
<td>胃炎、消化性潰瘍、肝炎、肝硬変などの病態について学ぶ。</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>胃炎、消化性潰瘍、肝炎、肝硬変などの症例をもとに、治療方針の立案、処方設計、使用する薬物の注意点を学ぶ。</td>
</tr>
<tr>
<td>11</td>
<td>佐藤</td>
<td>消化器系疾患（II）</td>
<td>腸管・胆管疾患、膵臓疾患、腸疾患などの病態・問題点について学ぶ。</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>腸管・胆管疾患、膵臓疾患、腸疾患などの症例をもとに、治療方針の立案、処方設計、使用する薬物の注意点を学ぶ。</td>
</tr>
</tbody>
</table>
[成績評価方法]

筆記試験を基礎に評価するが、出席、授業時間中のミニ試験、レポート、授業参加態度等を加味して、総合的に評価する。

[参考書]
「薬剤師・薬学生のための 臨床医学」矢崎義雄、乾賢一 編（文光堂）
「今日の治療薬 2014」浦部晶夫/島田和幸/川合琴一/編集（南江堂）
「わかりやすい 疾患と処方薬の解説 2012」斎藤康 編集（アークメディア）
授業科目名（対象学科）：臨床検査学（薬学科）
配当学年（セメスター）：4年（8）
単位数：2
担当教員：富岡 佳久、鈴木 直人
丹羽 俊文、森 建文
林 慎一、八田 益充
齋藤 芳彦

【目的の概要】
診療における臨床検査の役割は、各種疾患を示す病態の結果として起こる生体の変化を客観的に捉え、疾患の診断、あるいは治療の指標とすることである。したがって、臨床検査を理解する事は疾患の病態を理解する上でとても重要である。講義ではこのような視点から、臨床検査の役割を踏まえて各種疾患の病態を理解するとともに、薬剤師としての臨床検査データの読み方、遺伝的、年齢的、生理的要因や合併症などの背景を踏まえたテーラーメイド薬物治療との関連も考える。

【学習の到達目標】
身体の病的変化を病態生理学的に理解するために、代表的な症候と臨床検査値に関する基本的知識を習得する。更に、個々の患者に応じた投与計画を立案できるようになるために、薬物治療の個別化に関する基本的知識と技能を習得する。

【授業内容】

<table>
<thead>
<tr>
<th>回目</th>
<th>担当者</th>
<th>項目</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>富岡</td>
<td>臨床検査学概論</td>
<td>臨床検査データから体の変化を知る意義、テーラーメイド薬物治療に関する全体像を理解する。</td>
</tr>
<tr>
<td>2</td>
<td>鈴木（直）</td>
<td>テーラーメイド薬物治療 I</td>
<td>薬物の作用発現・動態・治療と遺伝的素因の関係について理解する。</td>
</tr>
<tr>
<td>3</td>
<td>鈴木（直）</td>
<td>テーラーメイド薬物治療 II</td>
<td>新生児、乳児、幼児、小児、高齢者、それぞれに対する薬物治療で注意すべき点を理解する。</td>
</tr>
<tr>
<td>4</td>
<td>鈴木（直）</td>
<td>テーラーメイド薬物治療 III</td>
<td>生殖、妊娠時、授乳婦、肥満患者、それぞれに対する薬物治療で注意すべき点を理解する。</td>
</tr>
<tr>
<td>5</td>
<td>富岡</td>
<td>テーラーメイド薬物治療 IV</td>
<td>臓器、肝臓、心臓それぞれの疾患を伴った患者における薬物治療で注意すべき点を理解する。</td>
</tr>
<tr>
<td>6</td>
<td>富岡</td>
<td>テーラーメイド薬物治療 V</td>
<td>患者固有の薬動力学的パラメーター、薬動力学的パラメーターを用いた投与設計を理解する。パピュレーションファーマコカイニティクスの概念と応用、薬物作用の日内変動を考慮した用法について理解する。</td>
</tr>
<tr>
<td>7</td>
<td>丹羽</td>
<td>症候</td>
<td>発熱、頭痛、発疹、黄疸、チアノーゼなどの代表的各種症候について、生じる原因とそれらを伴う代表的疾患を理解する。</td>
</tr>
</tbody>
</table>

— 118 —
<table>
<thead>
<tr>
<th>番号</th>
<th>教師</th>
<th>内容</th>
</tr>
</thead>
</table>
| 8 | 丹羽 | 生体成分の分析
尿および糞便を用いた代表的な臨床検査を列挙し、その検査値の異常から推測される主な疾病を理解する。 |
| 9 | 森 | 内分泌関連の検査 I
代表的な内分泌・代謝疾患に関連する検査を列挙し、その検査値の異常から推測される主な疾病を理解する。 |
| 10 | 森 | 内分泌関連の検査 II
代表的な内分泌・代謝疾患に関連する検査を列挙し、その検査値の異常から推測される主な疾病を理解する。 |
| 11 | 林 | 遺伝子検査 I
遺伝子検査を用いて、その検査値の異常から推測される主な代表的疾患を理解する。 |
| 12 | 林 | 遺伝子検査 II
遺伝子検査を用いて、その検査値の異常から推測される主な代表的疾患を理解する。 |
| 13 | 八田 | 微生物検査
微生物検査を用いて、その検査値の異常から推測される主な代表的疾患を理解する。 |
| 14 | 齋藤 | 血液・生理検査など実際の業務
臨床検査の場での血液・生理検査など実際の業務に関して、その意義を理解する。 |

【成績評価方法】
小テスト・レポート、講義への出席状況を基礎に評価する。

【参考書】
「薬学生のための臨床化学」改訂第2版 後藤順一、片山善章編、南江堂（2005）
「NEW 臨床検査診断学」宮井 潔 編、南江堂（2007）
授業科目名（対象学科） 薬事関係法規（薬学科） 配当学年（セメスター） 4年(8)
単位数 1
担当教員 氏家 國夫

[目的と概要]
薬学生が医療の担い手としての薬剤師が将来社会において活動を行う際に必須となる薬剤師法、薬事法その他薬事関係法規、医療関係法規、衛生関係法規等について理解する。

[学習の到達目標]
薬剤師国家試験を見据え、医療の担い手としての薬剤師が将来社会において活動を行う際に必要となる薬事法をはじめ、医療、保険、薬事等関連法規等を修得し医療現場等で活用できるようにする。

[授業内容]

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>項 目</th>
<th>授 業 内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>法律概論・倫理・責任</td>
<td>薬事関係法規の理解のために、法律の仕組み等、法律全般と医療の担い手としての薬剤師の責任について理解する。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>薬剤師法</td>
<td>薬剤師の責務と役割について理解する。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>薬事法</td>
<td>医薬品等の製造から販売・服用までの許可・承認等の仕組みを理解し、製造販売承認、製造販売承認、販売、管理・監督などの基本と品質保証・製造管理承認審査システム、市販後調査制度について理解する。</td>
</tr>
<tr>
<td>氏家</td>
<td></td>
<td>全8 麻薬及び向精神薬取締法</td>
<td>薬事法の特別法として位置付けられるこれら四法について、その目的および規制内容等について理解する。特に、違法取締法・あへん法・大麻法使用による麻薬・向精神薬の規制及び末期医療における疹</td>
</tr>
<tr>
<td></td>
<td></td>
<td>取締法</td>
<td>痛緩和医薬品の適正使用の法的システムについて理解する。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>毒物及び劇物取締法</td>
<td>本法の目的、規制内容等について理解する。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>その他の関係法規</td>
<td>医療法、医師法、健康保険法、介護保険法等医療分野、及び刑法、製造物責任法、独立行政法人医薬品医療機器総合機構等関係する制度や法規の目的、内容について理解する。</td>
</tr>
</tbody>
</table>

[成績評価方法] 出席を重視する。小テストを含めた筆記試験による。
[その他] 講義内容のほとんどが薬剤師国家試験出題基準（http://www.jshp.or.jp/cont/10/1015-1.pdf）に含まれる。
[教科書] 薬事法規・制度及び倫理解説 2014-15 年版 薬事日報社
[参考書] 「薬事法規（２０１４）」薬事日報社
「薬事法・薬剤師法・毒性及び劇物取締法解説」薬事日報社；第２４版
「平成２６年度版 薬事法令ハンドブック」薬事日報社
「薬事法令ハンドブック 承認許可要件省令 第６版」薬事日報社
授業科目名（対象学科） 薬学英語（薬学科） 配当学年（セメスター） 4年（8）
単位数 1（必修）
担当教員 大江 知行、山口 雅彦
寺崎 哲也、高橋 信行
富岡 佳久、根東 義則

[目的と概要]
薬学英語は、国際的な視野で高度な薬学領域の知識や情報を獲得し、また専門的な立場からグローバルに情報交換をはかるために重要であり、専門領域で用いられる用語や表現を学ぶとともに国際的なコミュニケーションの感覚を醸し出すことを目的とする。

[学習の到達目標]
薬学英語に必要と考えられる化学系、生物系、医療系の専門的な英語の用語、用法を理解し、実際に情報の収集、交換、発信に用いることができるようになる。

[授業内容]

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>講義題目</th>
</tr>
</thead>
</table>
| 1 | 根東 | ガイダンス
内容：スケジュール、講義概要説明 |
| 2 | 大江 | 化学系薬学英語コミュニケーション
内容：研究室（留学生、訪問者）での英会話 |
| 3 | 山口 | 化学系薬学英語リーディング・ライティング
内容：英語で書くことの考え方と書き方について、論文執筆法を含めて理解 |
| 4 | 寺崎 | 生物系薬学英語コミュニケーション
内容：講演資料の作成と演講と質疑応答などについて |
| 5 | 未定 | 生物系薬学英語リーディング・ライティング
内容：英語学術論文の構成と読み方・書き方を実際の作業を通して学ぶ |
| 6 | 高橋 | 医療系薬学英語コミュニケーション
内容：英語を母国語とする研究者の講演をもとに英語でのコミュニケーションを学習 |
| 7 | 富岡 | 医療系薬学英語リーディング・ライティング
内容：医療系文書の理解、さまざまな場面を設定した英文の組み立て |
| 8 | 根東 | 総合演習
内容：海外の研究者による英語演習と質疑応答 |

[成績評価方法] 出席、レポート等により評価する。

【教科書及び参考書】 指定しない。
＊各講師の授業実施日は別途連絡する。

—121—
実習科目
【目的と概要】
医薬品の純度は、薬理作用のみならず、副作用発現にも直接関与することから、それを正確に測定することは、患者のQOLの観点からもきわめて重要となる。本分析化学実習では、医薬品の品質管理不可欠な、化学実験室の実験に広く用いる定量分析法の基礎を学ぶ。その基礎理解を伴う、薬物の種類別、生体の成分別の定量分析法を学び、実習を通じて体系化された定量分析の方法、原理を学び、もののが見方、考え方を修得する。

【学習の到達目標】
日本薬局方収載の容量分析法について理解し、実習で実習できるようになる。

【実習内容】
濃度既知の標準液を反応させ、反応系に添加した指示薬の変色から化学反応の終点を判定し、反応に要した標準液の量と濃度から当量関係によって目的成分の含量、あるいは濃度を求めめる。また、標準液の濃度を当量関係の明らかに標準表を用いて正確に求める、いわゆる間接的にして化学反応を測定し、学習する。

（1）酸塩基滴定
水を溶媒とする酸塩基反応、当量点におけるpHと指示薬の変色関係を理解するとともに、
鎮痛剤アスピリンの定量法について実習する。
1）0.1 mol/L水酸化ナトリウム標準液の調製と標準
0.1 mol/L水酸化ナトリウム標準液を調製し、アミノ酸標準試葉（標準試葉）並びに塩酸標準液を
用いて標定することにより、標準の直接法と間接法について理解する。
2）アスピリンの定量
鎮痛剤であるアスピリンの定量を行い、逆滴定について理解する。

（2）キレート滴定
金属イオンと多価配位子とのキレート生成反応、当量点における金屬指示薬の変色メカニズ
ムを理解するとともに、バントン酸カルシウム（B群ビタミン）に含まれるカルシウムイオン
の定量法を通じ、測定原理を理解する。
1）0.01 mol/Lエチレンジアミン四塩素二水素ニトロリウム標準液の調製と標準
0.01 mol/Lエチレンジアミン四塩素二水素ニトロリウム標準液を調製し、亜鉛（標準試葉）を
用いて標定する。
2）0.01 mol/L 塩化マグネシウム標準液の調製と標定
0.1 mol/L 塩化マグネシウム標準液を調製し、エチレンジアミン四塩素二水素ニトロリウム
標準液を用いて標定する。
3）バントン酸カルシウムの定量
バントン酸カルシウム中のカルシウムイオンを定量し、キレート滴定法について理解する。

【成績評価方法】
出席状況、実習態度とレポートによって評価する。

【参考書】
「第16改正日本薬局方解説書」、日本薬局方解説書編集委員会編、廣川書店
「新分析化学実験」、日本分析化学会北海道支部・東北支部編、化学同人
「バントン酸分析化学Ⅰ改訂第2版」(2012) 萩中・淳山口政俊、千枝正彦編、南江堂
「定量薬品分析」、百瀬・勉著、廣川書店
「図解とフローチャートによる定量分析」浅田誠一、内出 萃、小林基宏共著、技術堂
出版株式会社 (1987)
構造薬学実習

物理化学実習（必修）

配当学年（セメスター） 2年（4）
単位数 2（分析化学実習含む）
担当分野 物性解析化学

生物構造化学

[目的と概要]
薬学の分野では種々の物理化学的方法が研究に応用されているが、本実習ではその中から各種分光法や電気化学法などの基本的な方法について、その原理を理解し実験方法を修得する。実習を通して反応速度、化学平衡に関する諸量を求める方法を学び、かつ分子構造の解析方法を修得する。

[学習の到達目標]
・各種機器分析法の測定原理を理解し、基本的な操作法を行うようになる。
・知りたい情報を得るための最適な機器分析法と操作法を見つけられるようになる。

[実習内容]
小グループに分かれ、以下の項目の実習を行なう。さらに、これらの実習を踏まえて、より発展的なテーマを企画・実施し、得られた結果について発表会を行う。
・イオン選択性電極
イオン選択性電極について、構造と原理を学ぶ。実際に濃度不明な試料を測定し、電極の特性や操作方法についての理解を深める。
・緩衝液
緩衝液の理論と調製法について学ぶ。実際に酸をアルカリで中和滴定し、その中和滴定曲線から緩衝液の緩衝能や適用範囲について理解を深める。
・酸解離定数
紫外・可視分光光度計の原理と使い方を学ぶ。その応用として、色素分子の吸収スペクトルの変化から、酸解離定数を求める方法を学ぶ。
・蛻光の応用
蛻光分光光度計の原理と使い方を学ぶ。また、蛻光を利用して、分子が置かれている環境を調べる方法を学ぶ。
・タンパク質の分析入門 — SDS-PAGE と吸光度測定
電気泳動を用いてタンパク質の分子量を推定する方法、および紫外吸収の吸光度を利用するタンパク質の定量法を習得する。
・赤外吸収スペクトル法の応用
赤外分光光度計の操作法と試料調製法を習得する。また、同位元素置換や水素結合による振動数の変化について理解し、赤外スペクトルによる分子構造解析法について学ぶ。

[成績評価方法]
出席とレポートの提出（必須）に加えて、実習への取り組み方も評価する。

[参考書]
「第4版実験化学講座 6，分光Ⅰ，7，分光Ⅱ」日本化学会編，丸善（1992）
「アトキンス物理化学 第8版（上），（下）」P. W. Atkins 著，千原・中村訳，東京化学同人（2009）
「分析化学 I, II 改訂第3版」田中・大倉編，南江堂（1992）
創薬科学実習

創薬化学実習 1（必修）

【目的と概要】
有機化学の目的は有機化合物の特性を理解することである。創薬化学実習 1 においては、有機化合物を多面的に捉えその合成を行うとともに、反応の理解を深める。また合成化学に不可欠な有機化学の基礎的実験操作を学習するとともに試薬、器具の安全な取り扱い方も修得する。

【学習の到達目標】
実習を通じ、抽出、乾燥、蒸留、再結晶、融点測定の基本操作およびスペクトルデータの解析（IR, NMR）を修得する。

【実習内容】
講義：有機化学総論および各論
実習：
1. 有機化学実験の基礎
 (1) 抽出、乾燥 (2) 常圧ならびに減圧蒸留、再結晶 (3) 融点測定 (4) 有機分析 (5) ガラス細工
2. 有機化合物の合成
 (1) 純素環化合物の合成
 クマリン、ビリジン、インドールなど医薬品の母核として重要な純素環化合物の合成を行う。
3. 有機化合物の反応と構造決定
 (1) 官能基の変換反応
 合成化学でよく用いられる変換反応を比較的単純な化合物を用いて行う。
 (2) 有機金属試薬の反応性
 最も代表的な Grignard 反応を用いて、炭素−炭素結合形成反応を行う。
 (3) 有機化合物の構造決定
 有機化合物の混合物を抽出により単離し、構造決定（化合物同定）を行う。

【成績評価方法】
出席、実習態度、レポート、実験ノート、筆記試験を総合的に評価する。

【参考書】
「有機化学実験のてびき 1－物質取扱法と分離精製法－」後藤俊夫他監修、化学同人 (1988)
「有機化学実験のてびき 3－合成反応[1]－」後藤俊夫他監修、化学同人 (1990)
「新編−テロ環化合物 基礎編」山中 宏、日野 亨、中川昌子、坂本尚夫 著 講談社 (2004)
「新編ヘテロ環化合物 応用編」山中 宏、日野 亨、中川昌子、坂本尚夫 著 講談社 (2004)
「研究室で役立つ有機実験のナビゲーター 第2版」 J. W. Zubrick 著、上村明男訳、丸善 (2011)
「取扱い注意試薬 ラボガイド」 東京化成工業（株）編、講談社 (1988)
「精密有機合成（改訂第2版）」L. F. Tietze、T. Eicher 著、高野誠一、小笠原国郎訳、南江堂 (1995)
「有機化合物のスペクトルによる同定法 －MS, IR, NMR の併用－（第7版）」
R. M. Silverstein、F. X. Webster 著、荒木 峻、益子洋一郎、山本 修、鍵田利経 訳
東京化学同人 (2006)
【目的と概要】
有機化学の目的は有機物質の特性を理解することである。創薬化学実習２の前半部分では，創薬化学実習１に引き続き，有機化合物の合成を行う過程で反応の理解を深め，基礎的実験操作を学習するとともに試薬，器具の安全な取り扱い方を修得する。
後半部分は Part 1 と Part 2 の 2 つの部分から構成される。Part 1 では生薬・天然物化学に関する実習を行う。動植物や微生物の代謝によってつくられ出される天然物は，古代より様々な形で利用されてきたおり，なかでも医療分野における重要性が高い。本実習では，生薬・植物に含まれるプラボノール配糖体ルチンに関する実習を行い，天然物の単離，誘導体の合成，スペクトルデータ解析による化学構造の決定法などの基本操作を学ぶ。一方，Part 2 では，薬薬品の原料として重要な薬用植物に関する実習を行う。本実習では，日本薬局方に収載されている生薬の基原植物を中心に，附属薬用植物園で栽培されている重要な薬用植物の形態を観察し，味やにおいを確かめるとともに，利用部位，含有成分，用途について学習する。

【学習の到達目標】
抽出，乾燥，蒸留，再結晶，融点測定，旋光度測定の基本操作及びスペクトルデータの解析（IR, NMR）を修得する。さらに，天然物化学の基本操作を修得するとともに，実験結果に対する観察力や考察力を養う。また，野外観察の基礎的技法を身につけるとともに，重要な薬用植物の特徴を説明できるようにすることを目標とする。

【実習内容】
講義：有機化学および天然物化学実習に関する総論および各論
実習：
1. 有機化学実習の基礎
（1）抽出，乾燥（2）常圧ならびに減圧蒸留，再結晶（3）融点測定（4）有機分析
2. 有機化合物の反応
（1）芳香族炭素化合物の反応
芳香族（フェノール）の反応性と反応の位置選択性について学ぶ。
（2）ペリ環型反応の特異性と理論
Diels–Alder 反応を行い，エンドならびにエキソ選択性について学ぶ。
3. プロトペルベリン型化合物の全合成
ホモペルトルム酸を出発原料として，フェネチルアミンとのアミド化の後，Bischler–Napieralski 反応によるイソキノリンの構築を行う。イソキノリンの還元と Pictet–Spengler 反応によりプロトペルベリン骨格を構築し，キシロビニンを合成する。これら一連の反応操作により，アミド化，
4. 天然物の単離、誘導体の合成および構造解析
 (1) 天然物の単離
 桜花からルチンを抽出するとともに、フラボノイドに特有な定性反応を行う。
 (2) 誘導体の合成
 酸加水分解、アルカリ分解、メチル化を行うことにより、ルチン誘導体を合成する。
 (3) 構造解析
 ルチンおよびその誘導体のスペクトルデータと化学反応結果を解析して、ルチンの構造を導き出す。
5. 薬用植物に関する実習
 (1) 外部形態の観察
 薬用植物をスケッチし、味やにおいを確かめる。近縁植物があるものについては、形態上の類似点と前後を観察する。
 (2) 含有成分
 味やにおいのもととなる成分を学ぶ。
 (3) 使用目的、使用部位、薬理作用
 薬用植物の使用目的と使用部位を学ぶとともに、使用目的と薬理作用ならびに含有成分と薬理作用の関連性を学ぶ。

【成績評価方法】
出席、実習態度、レポート、実験ノート、筆記試験を総合的に評価する。

【参考書】
「有機化学実験のてびき 1－物質取扱法と分離精製法－」後藤俊夫他監修、化学同人 (1988)
「有機化学実験のてびき 3－合成反応[1]－」後藤俊夫他監修、化学同人 (1990)
「新編ヘテロ環化合物 基礎編」山中宏、高野亨、中川昌子、坂本尚夫 著 講談社 (2004)
「新編ヘテロ環化合物 応用編」山中宏、高野亨、中川昌子、坂本尚夫 著 講談社 (2004)
「研究室で役立つ有機実験のナビゲーター 第2版」 J. W. Zubrick 著、上村明男訳、丸善 (2011)
「取扱い注意試葉 ラボガイド」 東京化成工業（株）編、講談社 (1988)
「精密有機合成（改訂第2版）」L. F. Tietze、T. Eicher 著、高野誠一、小笠原國郎訳、南江堂 (1995)
「有機化合物のスペクトルによる同定法 －MS, IR, NMR の併用－ （第7版）」
R. M. Silverstein、F. X. Webster 著、荒木誠、崎、益子洋一郎、山本修、塚田利紘 訳
東京化学同人 (2006)
実習科目名
生命葉学実習（必修）

配当学年（セメスター） 3年（5）
単位数 3
担当分野 分子細胞生化学
細胞情報葉学
生命機能解析学
生体防御葉学
遺伝子制御葉学

[目的と概要]
生命現象を分子レベルで捉え、薬物の作用を生化学的に理解するための方法論を学ぶことを目的とし、生
体試料、細胞及び微生物の取り扱い方法、ならびに生化学的、分子生物学的基本操作を修得する。
具体的には、臓器・組織の構造の観察、タンパク質・酵素活性の測定、細胞・組織を用いた生理機能の生
化学的解析、遺伝子発現の解析、微生物の分離や、生質発現の観察、DNAの増幅や制限酵素地図作成など分子
生物学的な基本操作について学ぶ。

[学習の到達目標]
・ 生体を構成する臓器・組織の構造を理解する。
・ タンパク質・酵素を用いた実験から生化学的な基本操作を修得する。
・ 細胞培養の基本技術を修得するとともに、細胞・組織を用いた実験の基本操作を修得する。
・ 遺伝子発現の原理を理解しその検出法を修得する。
・ 器具の滅菌法・無菌操作・菌の安全な取り扱いなどの実験技術を修得するとともに、微生物に対する基
礎的理解を深める。

[実習内容]
【臓器・組織の観察及び生化学的基本操作】
1) 臓器・組織の観察
 ラットの解剖、及び組織標本の顕微鏡観察を行う。
2) タンパク質・酵素の定量・精製
 タンパク質の分離、タンパク質濃度の測定、酵素活性の測定を行う。
3) 細胞の取り扱い
 マスト細胞の分離、マスト細胞の活性化、ヒスタミンの定量を行う。

【細胞と情報伝達】
1) 細胞の培養
 細胞培養の基本技術を修得し、ラット副腎細胞性質細胞を用い、増殖および分化を解析する。
2) 細胞の機能解析
 血小板の凝集をアグリゴメータで解析し、受容体刺激による血小板機能変化を解析する。
3) 細胞内タンパク質の解析
 細胞内タンパク質のウエスタンブロット法による解析を行う。
【遺伝子発現と酵素反応】

1) 遺伝子発現の原理
 大腸菌を用いて lacZ 遺伝子の誘導発現を酵素活性の測定により調べる。また、ショウジョウバエ個体を用い、酵素基質の発色を染色することにより組織特異的発現を観察する。

2) 酵素反応の原理
 lacZ 遺伝子産物である β-ガラクトンダーゼのアフィニティークロマトグラフィーによる精製、SDS-PAGE および活性測定による分析を行う。

3) レポーター遺伝子を利用した発現解析
 レポーター遺伝子を利用して、自然免疫応答を検出する。

【微生物と化学療法薬】

1) 微生物の取り扱い方法
 減菌、消毒、無菌手技、ピペット操作および培地の調製法を実習する。

2) 微生物の培養・同定
 培地に細菌を接種した後に培養を行い、固形培地上での細菌のコロニー形成や液体培地中での繁殖の様子を観察する。また、PCR 法による細菌の同定を行う。

3) 抗菌スペクトラム
 種々の抗生物質の抗菌スペクトラムならびに抗生物質の生物学的検定法を実習する。

4) 遺伝子の移動・導入
 新たに獲得した形質を観察することで、大腸菌間で遺伝子が移動する現象（接合）を観察する。また、大腸菌内への人工的な遺伝子導入法（形質転換）を実習する。

【基礎分子生物学】

1) mRNA の検出・定量 (1)
 Reverse Transcription-Polymerase Chain Reaction（RT-PCR）法により、mRNA 由来の cDNA を合成した後に、PCR によって何百万倍にも増幅する。

2) mRNA の検出・定量 (2)
 生体内における mRNA の発現量をノーザン法によって解析する。RT-PCR 法との違いについて理解する。

3) エピトープタグを利用した巨大タンパク質・RNA 複合体の精製
 エピトープタグを人工的に付加したリボソーム構成タンパク質を用いて生体内のタンパク質合成装置であるリボソーム（タンパク質・RNA 複合体）の精製を実習する。

【成績評価方法】
出席・実習態度およびレポートで評価する。
実習科目名 医療薬学実習(必修) 配当学年(セメスター) 3年(5)
単位数 2
担当分野 薬理学分野
衛生化学分野
薬物送達学分野

【目的と概要】
医療薬学実習では、医療薬学関連領域の理解を深めるとともに基礎的手法を修得する。まず薬物の薬理効果を理解するために、中枢・末梢神経系と循環器系に作用する代表的なものについてその薬効評価に関する原理と手法を学ぶ。さらに中枢神経系に作用する医薬品の開発研究における生物学的検査法を理解すると共に、マウス脳の解剖を行い作用発現に重要な脳の部位について学ぶ。次に薬理効果に大きく影響を与える薬物動態の理論およびその解析手法を学び、臨床薬物投与設計論理を理解する。また、さらに、患者間の個人差の原因や薬物相互作用の相互作用の重要な変動要因の一つである薬物代謝酵素の遺伝子配列を解析し、遺伝要因が酵素活性に及ぼす影響を理解する。

【学習の到達目標】
医療現場で用いられている医薬品の作用機序とその薬効評価方法、体内動態に関連した薬物代謝と相互作用の分子機序、薬物の投与設計および解析方法について理解し、技能を修得する。

【実習内容】
1. 薬物の薬効評価法
 (1) 実験動物の構造（ラット脳・消化管・心臓・血管の解剖と観察）
 (2) 末梢神経・循環器薬理（消化管：摘出回腸、心臓：摘出心臓、循環器：麻酔下ラット血圧）
 (3) 中枢神経薬理（抗けいれん薬の薬効検定）
2. 薬物代謝の個人差と薬物相互作用
 (1) 薬物代謝酵素の阻害と誘導
 (2) 薬物代謝酵素の遺伝子多型
3. 薬物動態解析と投与設計、一般試験法
 (1) 速度論によるパラメーターの算出、点滴と繰り返し投与の投与設計
 (2) TDMとモーメント解析
 (3) 納入試験法

【成績評価方法】
出席および参加状況とレポートを基に評価する。

【参考書】
必要に応じて資料を配布する。
実習科目名（対象学科） 専門薬学実習（創薬科学科） 配当学年（セメスター） 3年（6）
単位数 6（必修）
担当教員 各分野指導教員

【目的と概要】
基礎薬学実習で学んだ実践的知識や基礎実験技術を有機的に関連づけることにより、研究課題を達成する能力を修得する。本実習は、4年次で実施される課題研究で必要とされる能力を身に付けるためのものとして位置づけられる。

【学習の到達目標】
研究課題を理解したうえで、課題を達成するための方法を論理的に考え、実験を実行できる。

【実習内容】
配属された分野の教員から、テーマが与えられて実習を行う。さらに、分野で行われるセミナーに参加する。

【成績評価方法】
配属された分野の教員が行う。
実習科目名（対象学科） 専門薬学実習 1（薬学科） 配当学年（セメスター） 3年（6）
単位数 6（必修）
担当教員 各分野指導教員

[目的と概要]
基礎薬学実習で学んだ実践的知識や基礎実験技術を有機的に関連づけることにより、研究課題を達成する能力を修得する。本実習は、5年次以降に実施される課題研究で必要とされる能力を身に付けるためのものとして位置づけられる。

[学習の到達目標]
研究課題を理解したうえで、課題を達成するための方法を論理的に考え、実験を実行できる。

[実習内容]
配属された分野の指導者から、テーマが与えられて実習を行う。さらに、分野で行われるセミナーに参加する。

[成績評価方法]
配属された分野の指導教員が行う。
実習科目名（対象学科） 専門薬学実習 2（薬学科） 配当学年（セメスター）4年（7・8）
単位数 12（必修）
担当教員 各分野指導教員

【目的と概要】
基礎薬学実習で学んだ実践的知識や基礎実験技術を有機的に関連づけることにより、研究課題を達成する能力を修得する。本実習は、薬学専門科目内容を体得し、5年次以降に実施される課題研究で必要とされる能力を身に付けるためのものとして位置づけられる。

【学習の到達目標】
研究課題を理解したうえで、課題を達成するための方法を論的に考え、実験を実行できる。

【実習内容】
配属された分野の指導者から、テーマが与えられて実習を行う。さらに、分野で行われるセミナーに参加する。

【成績評価方法】
配属された分野の指導教員が行う。
実習科目名	医療薬学基礎実習（薬学科） 配当学年（セメスター）4年（8）
単位数 | 4（必修）
担当分野 | 臨床薬学

がん化学療法薬学
生活習慣病治療薬学
医療薬学教育研究センター
医薬品開発構想寄附講座
地域薬局学寄附講座

[目的と概要]
医療や健康保険事業に参画し次世代を切り開いていけるようになるために、医療薬学病院実習・医療薬学薬局実習に先立って、大学内で、調剤および製剤、服薬指導など薬剤師職務の基礎となる知識・技能・態度を修得する。

医療薬学演習2（OSCE演習）とOSCEを挿んで、前半を基本実習、後半を発展実習とする。主に薬学教育モデル・コアカリキュラム*に準じて行い、発展実習では本学独自の内容を加えて行なう。

* URL: http://www.pharm.or.jp/kyoiku/md1.html

[学習の一般目標・到達目標]
基本実習：
《事前学習を始めるにあたって》事前学習に積極的に取り組むために、病院と薬局での薬剤師業務の概要と社会的使命を理解する。

①薬剤師が行う業務が患者体位のフアーマシューティカルケアの概念にそったものであることについて討議する。②チーム医療における薬剤師の役割を説明できる。

《処方箋と調剤》医療チームの一員として調剤を正確に実施できるようになるために、処方せん授与から服薬指導までの流れに関する基本的な知識・技能・態度を修得する。

①患者に適した剤形を選択できる。②患者の特性（新生児、小児、高齢者、妊娠など）に適した用法・用量について説明できる。③患者の特性に適した用量を計算できる。④病態（腎、肝疾患など）に適した用量設定について説明できる。⑤代表的な処方せん例の鑑査をシミュレートできる。⑥処方せん例に従って、計数調剤をシミュレートできる。⑦処方せん例に従って、計量調剤をシミュレートできる。⑧調剤された医薬品の鑑査をシミュレートできる。

《疑義照会》処方せん上上の問題点が指摘できるようになるために、用法・用量、禁忌、相互作用などを含む調剤上注意すべき事項に関する基本的知識・技能・態度を修得する。

①代表的な配合变化の組合せとその理由を説明できる。②特定の配合によって生じる医薬品の性状、外観の変化を観察する。③代表的な医薬品について効能・効果、用法・用量を列挙でき
る。◎代表的な医薬品について警告、禁忌、副作用を列挙できる。◎代表的な医薬品について相互作用を列挙できる。◎疑義見解をシミュレートする。

《医薬品の管理と供給》病院・薬局における医薬品の管理と供給を正しく行うために、内服薬、注射剤などの取扱い、および院内製剤・薬局製剤に関する基本的知識と技能を修得する。

◎医薬品管理の意義と必要性について説明できる。◎代表的な剤形の安定性、保存性について説明できる。◎毒薬・劇薬の管理および取扱いについて説明できる。◎麻薬、精神薬などの管理と取扱い（投薬、廃棄など）について説明できる。◎薬剤分画製剤の管理および取扱いについて説明できる。◎輸血用血液製剤の管理および取扱いについて説明できる。◎代表的な生物製剤の種類と適応を説明できる。◎生物製剤の管理と取扱い（投薬、廃棄など）について説明できる。◎麻薬の取扱いをシミュレートできる。代表的な放射性医薬品の種類と用途を説明できる。放射性医薬品の管理と取扱い（投薬、廃棄など）について説明できる。◎薬局製剤の意義、調製上の手続き、品質管理などについて説明できる。◎代表的な院内製剤を調製できる。◎無菌操作の原理を説明し、基本的な無菌操作を実施できる。◎抗悪性腫瘍剤などの取扱いにおけるケミカルハザード回避の基本的手技を実施できる。◎注射剤の代表的な配合変化を列挙し、その原因を説明できる。◎代表的な配合変化を検出できる。◎代表的な輸液と管理栄養剤の種類と適応を説明できる。◎体内分解の過不足を判断して補正できる。◎代表的な消毒薬の用途、使用濃度を説明できる。◎消毒薬調製時の注意点を説明できる。

《リスクマネジメント》薬剤師業務が人命にかかわる仕事であることを認識し、患者が被る危険を回避できるようになるために、医薬品の副作用、調剤上の危険因子とその対策、院内感染などに関する基本的知識、技能、態度を修得する。

◎代表的な医薬品の副作用の初期症状と検査所見を具体的に説明できる。◎基本的なバイタルサインを評価できる。◎誤りを生じやすい調剤例を列挙できる。◎リスクを回避するための具体策を提案する。◎事故が起こった場合の対処方法について提案する。◎心肺蘇生の手順を具体的に説明できる。◎心肺蘇生に用いる薬剤と使用方法について説明できる。◎AEDを用いて心肺蘇生ができる。

《服薬指導と患者情報》患者の安全確保とQOL向上に貢献できるようになるために、服薬指導などに関する基本的知識、技能、態度を修得する。

◎インフォームド・コンセント、守秘義務などに配慮する。◎適切な言葉を選び、適切な手順を経て服薬指導する。◎医薬品に不安、抵抗感を持つ理由を理解し、それを除く努力をする。

◎患者接遇に際し、配慮しなければならない注意点を列挙できる。◎代表的な医薬品について、適切な服薬指導ができる。◎共感的態度で患者インパクトを行う。◎患者背景に配慮した服薬指導ができる。◎代表的な症例についての服薬指導の内容を適切に記録できる。◎症例の概要を端的に書く。◎症例の概要を端的に発表できる。

《事前学習のまとめ》病院実務実習、薬局実務実習に先立って大学内で行った事前学習の効果を高めるために、調剤および服薬指導などの薬剤師職務を総合的に実習する。
発展実習：
新しい薬剤師業務をシミュレーションしながら、将来の医療薬学や薬剤師の業務を考え、それを築いて行くための基礎を形成する。
（主な内容：《バイタルサイン》《副作用とフィジカルアセスメント》《インフォームドコンセンプト》《病態解析と症例提示》《抗がん薬の無菌調製》《放射性医薬品》《医薬品管理》《危険予知トレーニング》《薬剤師業務 SGD》）

【成績評価方法】
出席点を全体の6割とする。
その他に実習態度、レポート等の結果を加味し、総合的に評価する。

【補助教材】
薬学教育センター編、病院・薬局実務実習 事前学習テキスト−実務実習モデル・コアカリキュラム 対応 第2版、評書社（2010）。
薬学共用試験研究会監修、OSCE ビジュアルガイド、薬ゼミ情報教育センター（2009）。
【参考書】
日本薬剤師会編、第十三改訂調剤指針、薬事日報社（2011）。
日本薬学会編、スタンダード薬学シリーズ 10 実務実習事前学習、東京化学同人（2006）。
第十六改正日本薬局方解説書、廣川書店（2011）。
実習科目名（対象学科） 医療薬学病院実習（薬学科） 配当学年（セメスター） 5年（9）
単位数 10（必修）
担当教員 薬学科教員

【概 要】
病院薬剤師の業務と責任を理解し、チーム医療に参画できるようになるために、調剤および製剤、服薬指導などの薬剤師業務に関する基本的知識、技能、態度を修得する。

【一般目標】
（1）病院調剤を実践する
病院において調剤を通じて患者に最善の医療を提供するために、調剤、医薬品の適正な使用ならびにリスクマネジメントに関連する基本的知識、技能、態度を修得する。
（2）医薬品を動かす・確保する
医薬品を正確かつ円滑に供給し、その品質を確保するために、医薬品の管理、供給、保存に必要な基本的知識、技能、態度を修得する。
（3）情報を正しく使う
医薬品の適正使用に必要な情報を提供できるようになるために、薬剤部門における医薬品情報管理（D1）業務に必要な基本的知識、技能、態度を修得する。
（4）ペットサイドで学ぶ
入院患者に有効性と安全性の高い薬物治療を提供するために、薬剤師病棟業務の基本的知識、技能、態度を修得する。
（5）薬剤を造る・調べる
患者個々の状況に応じた適切な剤形の医薬品を提供するため、院内製剤の必要性や特性を認識し、院内製剤の製造ならびにそれらの試験に必要とされる基本的知識、技能、態度を修得する。
（6）医療人としての薬剤師
常に患者の存在を念頭におき、倫理感を持ち、かつ責任感のある薬剤師となるために、医療の担い手としてふさわしい態度を修得する。

【学習の到達目標】
（1）病院調剤を実践する
《病院調剤業務の全体の流れ》
・患者の診療過程に同行し、その体験を通して診療システムを概説できる。／病院内での患者情報の流れを図式化できる。／病院に所属する医療スタッフの職種名を列挙し、その業務内容を相互に関連づけて説明ができる。／薬剤部門を構成する各セクションの業務を体験し、その内容を相互に関連づけて説明できる。／処方せん（外来、入院患者を含む）の受付から患者への医薬品交付、服薬指導に至るまでの流れを概説できる。／病院薬剤師と薬局薬剤師の連携の重要性を説明できる。
《計数・計量調剤》
・処方せん（麻薬、注射剤を含む）の形式、種類および記載事項について説明できる。／処方せんの記
載事項（医薬品名、分量、用法・用量など）が整っているか確認できる。代表的な処方せんについて、処方内容が適正であるか判断できる。薬剤に基づき、処方内容が適正であるか判断できる。適切な
疑義照会の実務を体験する。薬袋、薬札に記載すべき事項を列挙し、記入できる。処方せんの記載に従って正しく医薬品の取りそろえができる。（技能）／錠剤、カプセル剤の計数調剤ができる。（技能）
代表的な医薬品の剤形を列挙できる。代表的な医薬品を色・形、識別コードから識別できる。（技能）
医薬品の識別に色・形などの外観が重要であることを、具体例を挙げて説明できる。代表的な医薬
品の商品名と一般名を対比できる。異なる商品名で、同一有効成分を含む代表的な医薬品を列挙できる。
毒薬・薬剤、麻薬、向精神薬などの調剤ができる。（技能）／一回量（一包化）調剤の必要性を判断し、実施できる。（知識・技能）／散剤、液剤などの計量調剤ができる。（技能）／調剤機器（計量器、分包機など）の基本的な取扱いができる。（技能）／細胞毒性のある医薬品の調剤について説明できる。
特別な注意を要する医薬品（抗悪性腫瘍薬など）の取扱いを体験する。（技能）／錠剤の粉砕、およびカプセル剤の開封の可否を判断し、実施できる。（知識・技能）／調剤された医薬品に対して、鑑査の実務を体験する。（技能）

《服薬指導》
・患者向けの説明文書の必要性を理解して、作成、交付できる。（知識・技能）／患者に使用上の説明が必要な服薬書、坐剤、吸入剤などの取扱いを説明できる。自己注射が承認されている代表的な医薬品を調剤し、その取扱いを説明できる。お薬受け渡し窓口において、薬剤の服用法、保管方法および使用上の注意について適切に説明できる。期待する効果が充分に現れていないか、あるいは副作用が疑われる場合のお薬受け渡し窓口における対処法について提案する。（知識・態度）

《注射剤調剤》
・注射剤調剤の流れを概説できる。／注射処方せんの記載事項（医薬品名、分量、用法・用量など）が整っているか確認できる。（技能）／代表的な注射剤処方せんについて、処方内容が適正であるか判断できる。（技能）／処方せんの記載に従って正しく注射剤の取りそろえができる。（知識・技能）／注射剤（高カロリー栄養輸液など）の混合操作を実施できる。（技能）／注射剤の配合変化に関して実施されている回避方法を列挙できる。／毒薬・薬剤、麻薬、向精神薬などの注射剤の調剤と適切な取扱いができる。（技能）／細胞毒性のある注射剤の調剤について説明できる。／特別な注意を要する注射剤（抗悪性腫瘍薬など）の取扱いを体験する。（技能）／調剤された注射剤に対して、正しい鑑査の実務を体験する。（技能）

《安全対策》
・リスクマネージメントにおいて薬剤師が果たしている役割を説明できる。／調剤過誤を防止するために、実際に工夫されている事項を列挙できる。／商品名の繰り、発音あるいは外観が類似した代表的な医薬品を列挙できる。／医薬品に関わる過失あるいは過誤について、適切な対処法を討議する。（態度）／インシデント、アクシデント報告の実例や、現場での体験をもとに、リスクマネージメントについて討議する。（態度）／職務上の過失、過誤等未然に防ぐための方策を提案できる。（態度）／実習中に生じた諸問題（調剤ミス、過誤、事故、テーブルなど）を、当該機関で用いられるフォーマットに正しく記入できる。（技能）

（2）医薬品を動かす・確保する

—138—
《医薬品の管理・供給・保存》
・医薬品管理の流れを説明できる。／医薬品の適正保存の意義を説明できる。／納品から使用までの医薬品の動きに係わる人達の仕事を見学し、薬剤師業務と関連づけて説明できる。／医薬品の品質に影響を与える因子と保存条件を説明できる。／納入医薬品の検収を体験し、そのチェック項目を列挙できる。／同一商品名の医薬品に異なる規格があるものについて具体例を列挙できる。／院内における医薬品の供給方法について説明できる。／請求のあった医薬品を取り扱えることができる。(技能)
《特別な配慮を要する医薬品》
・麻薬・向精神薬および覚せい剤原料の取扱いを体験する。(技能)／毒薬、劇薬を適切に取り扱うことができる。(技能)／血漿分画製剤の取扱いを体験する。(技能)／法的な管理が義務付けられている医薬品(麻薬、向精神薬、劇薬、毒薬、特定生物由来製剤など)を挙げ、その保管方法を見学し、その意義について考察する。(態度)
《医薬品の採用・使用中止》
・医薬品の採用と使用中止の手続きを説明できる。／代表的な同種・同効薬を列挙できる。

(3) 情報を正しく使う
《病院での医薬品情報》
・医薬品情報源のなかで、当該病院で使用しているものの種類と特徴を説明できる。／院内への医薬品情報提供の手段、方法を概説できる。／緊急安全性情報、不良品回収、製造中止などの緊急情報の取扱い方法について説明できる。／患者、医療スタッフへの情報提供における留意点を列挙できる。
《情報の入手・評価・加工》
・医薬品の基本的な情報を、文献、MR (医薬情報担当者) などの様々な情報源から収集できる。(技能)／DI ニュースなどを作成するために、医薬品情報の評価、加工を体験する。(技能)／医薬品・医療用具等安全性情報報告用紙に、必要事項を記載できる。(知識・技能)
《情報提供》
・医療スタッフからの質問に対する適切な報告書の作成を体験する。(知識・技能)／医療スタッフのニーズに合った情報提供を行体験する。(技能・態度)／患者のニーズに合った情報の収集、加工および提供を体験する。(技能・態度)／情報提供内容が適切か否かを追跡できる。(技能)

(4) ベッドサイドで学ぶ
《病棟業務の概説》
・病棟業務における薬剤師の業務 (薬剤管理、与薬、リスクマネージメント、供給管理など) を概説できる。／薬剤師の業務内容について、正確に記録をとり、報告することの目的を説明できる。／病棟における薬剤の管理と取扱いを体験する。(知識・技能・態度)
《医療チームへの参加》
・医療スタッフが日常使っている専門用語を適切に使用できる。(技能)／病棟において医療チームの一員として他の医療スタッフとコミュニケーションする。(技能・態度)
《薬剤管理指導業務》
・診療録、看護記録、重要な検査所見など、種々の情報源から必要な情報を収集できる。(技能)／報告
に必要な要素（5WH）に留意して、収集した情報を正確に記載できる（薬歴、服薬指導歴など）。（技能）／収集した情報ごとに誰に報告すべきか判断できる。（技能）／患者の診断名、病態から薬物治療方針を把握できる。（技能）／使用薬剤の使用上の注意と副作用を説明できる。／臨床検査値の変化と使用薬剤の関連性を説明できる。／医師の治療方針を理解したうえで、患者への適切な服薬指導を体験する。（技能・態度）／患者の薬に対する理解を確かめるための開放型質問方法を実施する。（技能・態度）／薬に関する患者の質間に分かり易く答える。（技能・態度）／患者との会話を通して、服薬状況を把握することができる。（知識・技能）／代表的な薬剤の効き目を、患者との会話や患者の様子から確かめることができる。（知識・技能）／代表的な薬剤の副作用を、患者との会話や患者の様子から気づくことができる。（知識・技能）／患者がリラックスし自らないと話ができるようなコミュニケーションを実施できる。（技能・態度）／患者に共感的態度で接する。（態度）／患者の薬物治療上の問題点をリストアップし、SOAPを作成できる。（技能）／期待する効果が現れていないか、あるいは不十分と思われる場合の対処法について提案する。（知識・技能）／副作用が疑われる場合の適切な対処法について提案する。（知識・態度）

《処方支援への関与》
・治療方針決定のプロセスおよびその実施における薬剤師の関わりを見学し、他の医療スタッフ、医療機関との連携の重要性を感じると。（態度）／適正な薬物治療の実施について、他の医療スタッフと必要な意見を交換する。（態度）

（5）薬剤を造る・調べる
《院内で調製する製剤》
・院内製剤の必要性を理解し、以下に例示する製剤のいずれかを調製できる。（軟膏、栓剤、散剤、液状製剤（消毒薬を含む）など）（技能）／無菌製剤の必要性を理解し、以下に例示する製剤のいずれかを調製できる。（点眼液、注射液など）（技能）
《薬物モニタリング》
・実際の患者例に基づきTDMのデータを解析し、薬物治療の適正化について討議する。（技能・態度）
《中毒医療への貢献》
・薬物中毒患者の中毒原因物質の検出方法と解毒方法について討議する。（知識・態度）

（6）医療人としての薬剤師
・患者および薬剤品に関連する情報の受取と共有の重要性を感じると。（態度）／患者にとって薬に関する窓口である薬剤師の果たすべき役割を討議し、その重要性を感じると。（態度）／患者の健康の回復と維持に薬剤師が積極的に貢献することの重要性を討議する。（態度）／生命に関わる職種であることを自覚し、ふさわしい態度で行動する。（態度）／医療の担い手が守るべき倫理規範を遵守する。（態度）／職務上知り得た情報について守秘義務を守る。（態度）

[授業形式および授業計画]
実習施設に約11週間派遣され、実務実習モデル・コアカリキュラムおよび病院実習方略の内容に基づいて、指導薬剤師監督下に参加型実習として行う。

—140—
[成績評価方法]
出席、実習ノート（ポートフォリオ）、学生担当教員の評点、指導薬剤師の評点をもとに総合的に評価する。

[教材（教科書、参考書）]
特に指定しない。
実習科目名
医療薬学薬局実習（薬学科） 配当学年（セメスター）5年（9・10）
単位数 10（必修）
担当教員 薬学科教授

【概 要】
薬局の社会的役割と責任を理解し、地域医療に参画できるようになるために、保険調剤、医薬品などの供給・管理、情報提供、健康相談、医療機関や地域との関わりについての基本的な知識、技能、態度を修得する。

【一般目標】
(1) 薬局アイテムと管理
薬局で取り扱うアイテム（品目）の医療、保健・衛生における役割を理解し、それらの管理と保存に関する基本的知識と技能を修得する。
(2) 情報のアクセスと活用
医薬品の適正使用に必要な情報を提供できるようになるために、薬局における医薬品情報管理業務に関する基本的な知識、技能、態度を修得する。
(3) 薬局調剤を実践する
薬局調剤を適切に行うために、調剤、医薬品の適正な使用、リスクマネジメントに関連する基本的知識、技能、態度を修得する。
(4) 薬局カウンターで学ぶ
地域社会での健康管理における薬局と薬剤師の役割を理解するために、薬局カウンターでの患者、顧客の接遇に関する基本的知識、技能、態度を修得する。
(5) 地域で活躍する薬剤師
地域に密着した薬剤師として活躍できるようになるために、在宅医療、地域医療、地域福祉、災害時医療、地域保健などに関する基本的知識、技能、態度を修得する。
(6) 薬局業務を総合的に学ぶ
調剤、服薬指導、患者・顧客接遇などの薬局薬剤師の職務を総合的に実習する。

【学習の到達目標】
(1) 薬局アイテムと管理
《薬局アイテムの流れ》
・薬局で取り扱うアイテムが医療の中で果たす役割について説明できる。／薬局で取り扱うアイテムの保健・衛生、生活の質の向上に果たす役割を説明できる。／薬局アイテムの流通機構に係わる人達の仕事を見学し、薬剤師業務と関連づけて説明できる。／
《薬局製剤》
・代表的な薬局製剤・漢方製剤について概説できる。／代表的な薬局製剤・漢方製剤を調製できる。
《薬局アイテムの管理と保存》
・医薬品の適正在庫とその意義を説明できる。／納入医薬品の検収を体験し、そのチェック項目（使用

— 142 —
期限、ロットなど）を列挙できる。／薬局におけるアイテムの管理、配列の概要を把握し、実務を体験する。（知識・技能）
《特別な配慮を要する医薬品》
・麻薬、向精神薬などの規制医薬品の取扱いについて説明できる。／毒物、劇物の取扱いについて説明できる。／法的な管理が義務付けられている医薬品（麻薬、向精神薬、劇薬、毒薬、特定生物由来製剤など）を挙げ、その保管方法を見学し、その意義について考察する。（態度）

（2）情報のアクセスと活用
《薬剤師の心構え》
・医療の担い手が守るべき倫理規範を遵守する。（態度）／職務上知り得た情報について守秘義務を守る。（態度）
《情報の入手と加工》
・医薬品の基本的な情報源（厚生労働省、日本製薬工業協会、製薬企業、日本薬剤師会、卸など）の種類と特徴を正しく理解し、適切に選択できる。（知識・技能）／基本的な医薬品情報（警告、禁忌、効能、副作用、相互作用など）を収集できる。（技能）／処方内容から得られる患者情報を的確に把握できる。（技能）／薬歴簿から得られる患者情報を的確に把握できる。（技能）／緊急安全性情報、不良品回収、製造中止などの緊急情報の取扱い方法を説明できる。（態度）／問い合わせに対し、根拠に基づいた論理的な報告書を作成できる。（知識・技能）／医薬品・医療用具等安全性情報報告用紙に必要事項を記載できる。（知識・技能）
《情報の提供》
・入手した情報を評価し、患者に対してわかりやすい言葉、表現で適切に説明できる。（技能・態度）／入手した患者情報を、必要に応じ、適正な手続きを経て他の医療従事者に提供できる。（技能・態度）／患者および医薬品に関連する情報の授受と共有の重要性を感じると。（態度）

（3）薬局調剤を実践する
《保険調剤業務の全体の流れ》
・保険調剤業務の全体の流れを理解し、処方箋の受付から調剤報酬の請求までの概要を説明できる。（知識・技能）／保険薬局として認定される条件を、薬局の設備と関連して具体的に説明できる。（知識・技能）
《処方箋の受付》
・処方箋（麻薬を含む）の形式および記載事項について説明できる。（知識・技能）／処方箋受付時の対応および注意事項（患者名の確認、患者の様子、処方箋の使用期限、記載不備、偽造処方箋への注意など）について説明できる。（知識・技能）／初来局者への対応と初回質問表の利用について説明できる。（知識・技能）／初来局および再来局患者から収集すべき情報の内容について説明できる。（知識・技能）／処方箋受付時の対応ができる。（技能・態度）／生命に関わる職種であることを自覚し、ふさわしい態度で行動する。（態度）／患者が自らすすんで話ができるように工夫する。（技能・態度）／患者との会話を通じて、服薬上の問題点（服薬状況、副作用の発現など）を把握できる。（技能）
《処方箋の鑑査と疑義照会》
・処方箋が正しく記載されていることを確認できる。（技能）／処方箋に記載された処方箋の妥当性
を、医薬品名、分量、用法、用量、薬物相互作用などの知識に基づいて判断できる。（知識・技能）／薬歴簿を参照して処方内容の妥当性を判断できる。（知識・技能）／疑義照会の行い方を身につけられる。（知識・態度）／疑義照会事例を通じて、医療機関との連携、患者への対応をシミュレートする。（技能・態度）

《計数・計量調剤》
薬袋、薬粋に記載すべき事項を列挙できる。／処方せんの記載に従って正しく医薬品の取りそろえができる。（技能）／抓剤、カプセル剤などの計数調剤ができる。（技能）／代表的な医薬品の剤形を列挙できる。／医薬品の識別に色、形などの外観が重要であることを、具体例を挙げて説明できる。／代表的な医薬品の商品名と一般名を対比できる。／同一商品名の医薬品に異なる規格があるものについて具体例を列挙できる。／異なる商品名で、同一有効成分を含む代表的な医薬品を列挙できる。／代表的な同種・同効薬を列挙できる。／代表的な医薬品を色・形・識別コードから識別できる。（技能）／一回量（一包化）調剤を必要とするケースについて説明できる。／一回量（一包化）調剤を実施できる。（技能）／錠剤の粉末、およびカプセル剤の開封の可否を判断し、実施できる。（知識・技能）／散剤、液剤などの計量調剤ができる。（技能）／調剤機器（量棒器、分包機など）の基本的取扱いができる。（技能）／毒薬・劇薬、麻薬、向精神薬などの調剤と取扱いができる。（技能）／特別な注意を要する医薬品（抗悪性腫瘍薬など）の取扱いを体験する。（技能）

《計数・計量調剤の鑑査》
調剤された医薬品に対して、鑑査の実務を体験する。（技能）

《服薬指導の基礎》
適切な服薬指導を行うために、患者から集める情報と伝える情報を予め把握できる。（知識・技能）／薬歴管理の意義と重要性を説明できる。／薬歴簿の記載事項を列挙し、記入できる。／薬歴簿の保管、管理の方法、期間などについて説明できる。／妊婦、小児、高齢者などへの服薬指導において、配慮すべき事項を列挙できる。／患者に使用上の説明が必要な眼軟膏、眼剤、吸入剤などの取扱い方を説明できる。（技能）／自己注射が承認されている代表的な医薬品を調剤し、その取扱い方を説明できる。

《服薬指導入門実習》
指示通りに医薬品を使用するように適切な指導ができる。（技能）／薬歴簿を活用了服薬指導ができる。（技能）／患者向けの説明文書を使用した服薬指導ができる。（技能）／お薬手帳、健康手帳を使用した服薬指導ができる。（技能）

《服薬指導実践実習》
患者に共感の態度で接する。（態度）／患者との会話を通じて病態、服薬状況（コンプライアンス）、服薬上の問題点などを把握できる。（技能）／患者が必要とする情報を的確に把握し、適切に回答できる。（技能・態度）／患者との会話を通じて使用中の薬の効き目、副作用に関する情報を収集し、必要に応じて対処法を提案する。（技能・態度）／入手した情報を評価し、患者に対してわかりやすい言葉、表現で適切に説明できる。（技能・態度）

《調剤録と処方せんの保管・管理》
調剤録の法的規制について説明できる。／調剤録への記入事項について説明できる。／調剤録の保管、管理の方法、期間などについて説明できる。／調剤後の処方せんへの記入事項について説明できる。／
処方せんの保管、管理の方法、期間などについて説明できる。

《調剤報酬》
・調剤報酬を算定し、調剤報酬明細書（レセプト）を作成できる。（技能）／薬剤師の技術評価の対象について説明できる。

《安全対策》
・代表的な医療事故訴訟あるいは調剤過誤事例について調査し、その原因について指導薬剤師と話し合う。（知識・態度）／名称あるいは外観が類似した代表的な医薬品を示すことができる。（特にリスクの高い代表的な医薬品（抗悪性腫瘍薬、抗糖尿病薬など）を列挙できる。）／調剤過誤を防止するために、実際に工夫されている事項を列挙できる。（態度）／過誤が生じたときの対応策を討議する。（態度）／インシデント・アクシデント報告の記載方法を説明できる。

（4）薬局カウンターで学ぶ
《患者・顧客との接遇》
・かかりつけ薬局・薬剤師の役割について指導薬剤師と話し合う。（態度）／患者、顧客に対して適切な態度で接する。（態度）／疾病の予防および健康管理についてアドバイスできる。（技能・態度）／医師への受診勧告を適切に行うことができる。（技能・態度）
《一般用医薬品・医療用具・健康食品》
・セルフケークションのための一般用医薬品、医療用具、健康食品などを適切に選択・供給できる。（技能）／顧客からモニタリングによって得た副作用および相互作用情報への対応策について説明できる。

《カウンター実習》
・顧客が自らすすんで話ができるように工夫する。（技能・態度）／顧客が必要とする情報を的確に把握する。（技能・態度）／顧客との会話を通じて使用薬の効き目、副作用に関する情報を収集できる。（技能・態度）／入手した情報を評価し、顧客に対してわかりやすい言葉、表現で適切に説明できる。（技能・態度）

（5）地域で活躍する薬剤師
《在宅医療》
・訪問薬剤管理指導業務について説明できる。（在宅医療における医療廃棄物の取り扱いについて説明できる。）／薬剤師が在宅医療に関わることの意義を指導薬剤師と話し合う。（態度）
《地域医療・地域福祉》
・病院薬剤師と薬局薬剤師の連携の重要性を説明できる。（知識・技能）／当該地域における休日、夜間診療、地域における役割を説明できる。（知識・技能）／当該地域における地域介護、介護支援専門員などの医療福祉活動の状況を把握できる。（知識・技能）
《災害時医療と薬剤師》
・緊急災害時における、当該薬局および薬剤師の役割について説明できる。
《地域保健》
・学校薬剤師の職務を見解し、その役割を説明できる。／地域住民に対する医薬品の適正使用の啓発活動における薬剤師の役割を説明できる。／麻薬・覚せい剤等薬物乱用防止運動における薬剤師の役割について説明できる。／日用品に係る薬剤師の役割について説明できる。／日用品に含まれる化学物質の危険性を列挙し、わかりやすく説明できる。／誤飲、誤食による中毒および食中毒に対して適切にアドバイスできる。（知識・技能）／生活環境における消毒の概念について説明できる。（知識・技能）／話題性のある薬物および健康問題について、科学的にわかりやすく説明できる。

（6）薬局業務を総合的に学ぶ
《総合実習》
・薬局業務を総合的に実践する。／患者の健康の回復と維持に薬剤師が積極的に貢献することの重要性を感じとする。（態度）／薬が病気の治療、進行防止を通じて、病気の予防と QOL の改善に貢献していることを感じる。（態度）

［授業形式および授業計画］
実習施設に約11週間派遣され、実務実習モデル・コアカリキュラムおよび薬局実習方略の内容に準じて、指導薬剤師監督下に参加型実習として行う。
［成績評価方法］
出席、実習ノート（ポートフォリオ）、学生担当教員の評点、指導薬剤師の評点をもとに総合的に評価する。

［教材（教科書、参考書）］
特に指定しない。
演習科目
演習科目名：医療薬学演習1（必修）
配当学年（セメスター）：4年（8）
単位数：2
担当教員：薬学科教員他

【目的と概要】
病院および薬局における医療薬学実務実習に先立ち、これまで学んできた薬学の基礎的知识について、総合的に理解することを目的とする。

【学習の到達目標】
薬剤師の職務に必要な基礎的事項を理解し、説明することができる。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>講義題目</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>ヒューマニズム・薬学入門</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>物理薬学（1）物質の物理的性質</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>物理薬学（2）化学物質の分析、生体分子・化学物質の構造決定</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>化学薬学（1）化学物質の性質と反応</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>化学薬学（2）ターゲット分子の合成と生体分子・医薬品の化学</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>化学薬学（3）自然が生み出す薬物</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>生物薬学（1）生命体の成り立ち</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>生物薬学（2）生命をミクロに理解する、生体防御</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>健康と環境</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>薬と疾病（1）薬の効くプロセス</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>薬と疾病（2）薬物治療および薬物療法に役立つ情報</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>製剤のサイエンス</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>医薬品の開発と生産</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>薬学と社会</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>実務実習事前学習－病院・薬局実習に行く前に</td>
</tr>
</tbody>
</table>

【成績評価方法】出席、CBT模擬試験等により評価する。
演習科目名

医療薬学演習 2（必修）

配当学年（セメスター）4年 (8)

単位数 1

担当教員 薬学科教員、他

目的と概要

病院および薬局における医療薬学実務実習に先立ち、薬剤師の職務に必要な基本技能・態度を総合的に体得し、実践できるようになることを目的とする。

学習の到達目標

薬剤師の職務に必要な基本技能・態度をもって、調剤や服薬指導などを実践することができる。

授業内容

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>講義題目</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>患者・来局者応対（1）薬局での患者応対</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>患者・来局者応対（2）病棟での初回面談</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>患者・来局者応対（3）来局者応対</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>薬剤の調製（1）散剤</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>薬剤の調製（2）水剤</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>薬剤の調製（3）軟膏剤</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>薬剤の調製（4）計数調剤</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>調剤検査（1）計数調剤</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>調剤検査（2）計量調剤</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>無菌操作の実践（1）衛生的手洗いと手袋着脱</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>無菌操作の実践（2）注射剤混合</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>情報の提供（1）薬局での薬剤交付</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>情報の提供（2）病棟での服薬指導</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>情報の提供（3）一般用医薬品の情報提供</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>情報の提供（4）疑義照会</td>
<td></td>
</tr>
</tbody>
</table>

成績評価方法

出席、ミニ OSCE 等により評価する。

補助教材・参考書

医療薬学基礎実習に同じ。
演習科目名 総合薬学演習（必修） 配当学年（セメスター） 6年（12）
単位数 2
担当教員 薬学科教員

【目的と概要】
薬学で学んだ基礎的及び応用的な知識について、統合的にまた体系的に理解することを目的とする。

【学習の到達目標】
薬学に関連する諸事項をさまざまな観点から統合的に理解し、説明できるようになる。

【授業内容】

<table>
<thead>
<tr>
<th>回</th>
<th>担当者</th>
<th>授業内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>物理・化学・生物(1) 物質の物理的性質 化学物質の分析</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>物理・化学・生物(2) 化学物質の性質と反応 ターゲット分子の合成 生体分子・医薬品の化学 天然物由来薬物</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>物理・化学・生物(3) 生命体の成り立ち 分子レベルの生命理解 感染症と生体防御</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>衛生 健康 環境</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>薬理 薬の効くプロセス</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>薬剤(1) 薬物の体内動態</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>薬剤（2）製剤化のサイエンス</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>病態・薬物治療(1) 体の変化 疾患各論</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>病態・薬物治療(2) 医薬品情報 患者情報</td>
<td></td>
</tr>
</tbody>
</table>
10 法規・制度・倫理
薬学と社会
医薬品の開発と生産
ヒューマニズム

11 実務 (1)
薬剤師業務

12 実務 (2)
病院業務
薬局業務

13 最終試験 I

14 最終試験 II

15 最終試験 III

[成績評価方法]
出席、レポート、最終試験結果等により評価する。
課題研究
実習科目名　課程研究（創薬科学科）　配当学年（セメスター）4年（7・8）
単位数　20（必修）
担当教員　各分野指導教員

【目的と概要】
課程研究は、学部教育の総決算として最終学年に計画された最も重要な科目である。各分野に配属された学生は、分野の教員から研究テーマが与えられ、学生各自の主体的な計画によって研究を行う。また研究結果を卒業論文としてまとめ、その成果を教職員、学部学生、大学院生の前で発表し、質疑応答が行われる。したがって本科目は学生が研究者となるための基礎的な準備教育であるとともに、将来の進路を選択するために役立つものと期待している。

【学習の到達目標】
・課題に関連するこれまでの研究成果を調査し、評価できる。
・課題達成のために解決すべき問題点を抽出できる。
・研究計画を立案できる。
・研究課題を通して、現象を的確に捉える観察眼を養う。
・研究の結果をまとめることができる。
・研究の結果を考察し、評価できる。
・研究の成果を発表し、適切に質疑応答ができる。

【実習内容】
配属された分野の教員から、それぞれの専門分野にしたがってテーマが与えられて研究を行う。また、分野内のセミナーへの参加、講演の聴講など、各分野のプログラムにしたがって研究が行われる。

【成績評価方法】
配属された分野の教員が行う。
実習科目名：課題研究（薬学科）
配当学年（セメスター）：5・6年（10・11・12）
単位数：20（必修）
担当教員：各分野指導教員

【目的と概要】
課題研究は、学部教育の総決算として最終学年に計画された最も重要な科目である。学部を構成する分野にほぼ同等となるように配属された学生は、各分野の指導教員から研究テーマが与えられ、学生各自の主体的な計画によって研究を行う。また研究結果を卒業論文としてまとめ、その成果を教職員、学部学生、大学院生の前で発表し、質疑応答が行われる。したがって本科目は学生が研究者となるための基礎的な準備教育であるとともに、将来の進路を選択するために役立つものと期待している。

【学習の到達目標】
・課題に関連するこれまでの研究成果を調査し、評価できる。
・課題達成のために解決すべき問題点を抽出できる。
・研究計画を立案できる。
・研究課題を通して、現象を的確に捉える観察眼を養う。
・研究の結果をまとめることができる。
・研究の結果を考察し、評価できる。
・研究の成果を発表し、適切に質疑応答ができる。

【実習内容】
配属された分野の指導教員から、それぞれの専門分野にしたがってテーマが与えられて研究を行う。また、分野内のセミナーへの参加、講演の聴講など、各分野のプログラムにしたがって研究が行われる。

【成績評価方法】
配属された分野の指導教員が行う。