Cobalt-Catalyzed Annylation of Salicylaldehydes and Alkynes to Form Chromones and 4-Chromanones

Abstract

A unique cobalt(I)–diphosphine catalytic system has been identified for the coupling of salicylaldehyde (SA) and an internal alkyne affording a dehydrogenative annulation product (chromone) or a reductive annulation product (4-chromanone) depending on the alkyne substituents. Distinct from related rhodium(I)- and rhodium(III)-catalyzed reactions of SA and alkynes, these annulation reactions feature aldehyde C-H oxidative addition of SA and subsequent hydrometalation of the C=O bond of another SA molecule as common key steps. The reductive annulation to 4-chromanones also involves the action of Zn as a stoichiometric reductant. In addition to these mechanistic features, the CoI catalysis described herein is complementary to the RhI- and RhIII-catalyzed reactions of SA and internal alkynes, particularly in the context of chromone synthesis.

Publication
Yang, J.; Yoshikai, N. Angew. Chem. Int. Ed. 2016, 55, 2870-2874.